Spaces:
Build error
Build error
| title: Surveyor | |
| emoji: 📊 | |
| colorFrom: gray | |
| colorTo: pink | |
| sdk: streamlit | |
| sdk_version: 1.2.0 | |
| app_file: app.py | |
| pinned: false | |
| # Auto-Research | |
| ![Auto-Research][logo] | |
| [logo]: https://github.com/sidphbot/Auto-Research/blob/main/logo.png | |
| A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting artifacts from a single research query. | |
| Data Provider: [arXiv](https://arxiv.org/) Open Archive Initiative OAI | |
| Requirements: | |
| - python 3.7 or above | |
| - poppler-utils - `sudo apt-get install build-essential libpoppler-cpp-dev pkg-config python-dev` | |
| - list of requirements in requirements.txt - `cat requirements.txt | xargs pip install` | |
| - 8GB disk space | |
| - 13GB CUDA(GPU) memory - for a survey of 100 searched papers(max_search) and 25 selected papers(num_papers) | |
| #### Demo : | |
| Video Demo : https://drive.google.com/file/d/1-77J2L10lsW-bFDOGdTaPzSr_utY743g/view?usp=sharing | |
| Kaggle Re-usable Demo : https://www.kaggle.com/sidharthpal/auto-research-generate-survey-from-query | |
| (`[TIP]` click 'edit and run' to run the demo for your custom queries on a free GPU) | |
| #### Installation: | |
| ``` | |
| sudo apt-get install build-essential poppler-utils libpoppler-cpp-dev pkg-config python-dev | |
| pip install git+https://github.com/sidphbot/Auto-Research.git | |
| ``` | |
| #### Run Survey (cli): | |
| ``` | |
| python survey.py [options] <your_research_query> | |
| ``` | |
| #### Run Survey (Streamlit web-interface - new): | |
| ``` | |
| streamlit run app.py | |
| ``` | |
| #### Run Survey (Python API): | |
| ``` | |
| from survey import Surveyor | |
| mysurveyor = Surveyor() | |
| mysurveyor.survey('quantum entanglement') | |
| ``` | |
| ### Research tools: | |
| These are independent tools for your research or document text handling needs. | |
| ``` | |
| *[Tip]* :(models can be changed in defaults or passed on during init along with `refresh-models=True`) | |
| ``` | |
| - `abstractive_summary` - takes a long text document (`string`) and returns a 1-paragraph abstract or “abstractive” summary (`string`) | |
| Input: | |
| `longtext` : string | |
| Returns: | |
| `summary` : string | |
| - `extractive_summary` - takes a long text document (`string`) and returns a 1-paragraph of extracted highlights or “extractive” summary (`string`) | |
| Input: | |
| `longtext` : string | |
| Returns: | |
| `summary` : string | |
| - `generate_title` - takes a long text document (`string`) and returns a generated title (`string`) | |
| Input: | |
| `longtext` : string | |
| Returns: | |
| `title` : string | |
| - `extractive_highlights` - takes a long text document (`string`) and returns a list of extracted highlights (`[string]`), a list of keywords (`[string]`) and key phrases (`[string]`) | |
| Input: | |
| `longtext` : string | |
| Returns: | |
| `highlights` : [string] | |
| `keywords` : [string] | |
| `keyphrases` : [string] | |
| - `extract_images_from_file` - takes a pdf file name (`string`) and returns a list of image filenames (`[string]`). | |
| Input: | |
| `pdf_file` : string | |
| Returns: | |
| `images_files` : [string] | |
| - `extract_tables_from_file` - takes a pdf file name (`string`) and returns a list of csv filenames (`[string]`). | |
| Input: | |
| `pdf_file` : string | |
| Returns: | |
| `images_files` : [string] | |
| - `cluster_lines` - takes a list of lines (`string`) and returns the topic-clustered sections (`dict(generated_title: [cluster_abstract])`) and clustered lines (`dict(cluster_id: [cluster_lines])`) | |
| Input: | |
| `lines` : [string] | |
| Returns: | |
| `sections` : dict(generated_title: [cluster_abstract]) | |
| `clusters` : dict(cluster_id: [cluster_lines]) | |
| - `extract_headings` - *[for scientific texts - Assumes an ‘abstract’ heading present]* takes a text file name (`string`) and returns a list of headings (`[string]`) and refined lines (`[string]`). | |
| `[Tip 1]` : Use `extract_sections` as a wrapper (e.g. `extract_sections(extract_headings(“/path/to/textfile”)`) to get heading-wise sectioned text with refined lines instead (`dict( heading: text)`) | |
| `[Tip 2]` : write the word ‘abstract’ at the start of the file text to get an extraction for non-scientific texts as well !! | |
| Input: | |
| `text_file` : string | |
| Returns: | |
| `refined` : [string], | |
| `headings` : [string] | |
| `sectioned_doc` : dict( heading: text) (Optional - Wrapper case) | |
| ## Access/Modify defaults: | |
| - inside code | |
| ``` | |
| from survey.Surveyor import DEFAULTS | |
| from pprint import pprint | |
| pprint(DEFAULTS) | |
| ``` | |
| or, | |
| - Modify static config file - `defaults.py` | |
| or, | |
| - At runtime (utility) | |
| ``` | |
| python survey.py --help | |
| ``` | |
| ``` | |
| usage: survey.py [-h] [--max_search max_metadata_papers] | |
| [--num_papers max_num_papers] [--pdf_dir pdf_dir] | |
| [--txt_dir txt_dir] [--img_dir img_dir] [--tab_dir tab_dir] | |
| [--dump_dir dump_dir] [--models_dir save_models_dir] | |
| [--title_model_name title_model_name] | |
| [--ex_summ_model_name extractive_summ_model_name] | |
| [--ledmodel_name ledmodel_name] | |
| [--embedder_name sentence_embedder_name] | |
| [--nlp_name spacy_model_name] | |
| [--similarity_nlp_name similarity_nlp_name] | |
| [--kw_model_name kw_model_name] | |
| [--refresh_models refresh_models] [--high_gpu high_gpu] | |
| query_string | |
| Generate a survey just from a query !! | |
| positional arguments: | |
| query_string your research query/keywords | |
| optional arguments: | |
| -h, --help show this help message and exit | |
| --max_search max_metadata_papers | |
| maximium number of papers to gaze at - defaults to 100 | |
| --num_papers max_num_papers | |
| maximium number of papers to download and analyse - | |
| defaults to 25 | |
| --pdf_dir pdf_dir pdf paper storage directory - defaults to | |
| arxiv_data/tarpdfs/ | |
| --txt_dir txt_dir text-converted paper storage directory - defaults to | |
| arxiv_data/fulltext/ | |
| --img_dir img_dir image storage directory - defaults to | |
| arxiv_data/images/ | |
| --tab_dir tab_dir tables storage directory - defaults to | |
| arxiv_data/tables/ | |
| --dump_dir dump_dir all_output_dir - defaults to arxiv_dumps/ | |
| --models_dir save_models_dir | |
| directory to save models (> 5GB) - defaults to | |
| saved_models/ | |
| --title_model_name title_model_name | |
| title model name/tag in hugging-face, defaults to | |
| 'Callidior/bert2bert-base-arxiv-titlegen' | |
| --ex_summ_model_name extractive_summ_model_name | |
| extractive summary model name/tag in hugging-face, | |
| defaults to 'allenai/scibert_scivocab_uncased' | |
| --ledmodel_name ledmodel_name | |
| led model(for abstractive summary) name/tag in | |
| hugging-face, defaults to 'allenai/led- | |
| large-16384-arxiv' | |
| --embedder_name sentence_embedder_name | |
| sentence embedder name/tag in hugging-face, defaults | |
| to 'paraphrase-MiniLM-L6-v2' | |
| --nlp_name spacy_model_name | |
| spacy model name/tag in hugging-face (if changed - | |
| needs to be spacy-installed prior), defaults to | |
| 'en_core_sci_scibert' | |
| --similarity_nlp_name similarity_nlp_name | |
| spacy downstream model(for similarity) name/tag in | |
| hugging-face (if changed - needs to be spacy-installed | |
| prior), defaults to 'en_core_sci_lg' | |
| --kw_model_name kw_model_name | |
| keyword extraction model name/tag in hugging-face, | |
| defaults to 'distilbert-base-nli-mean-tokens' | |
| --refresh_models refresh_models | |
| Refresh model downloads with given names (needs | |
| atleast one model name param above), defaults to False | |
| --high_gpu high_gpu High GPU usage permitted, defaults to False | |
| ``` | |
| - At runtime (code) | |
| > during surveyor object initialization with `surveyor_obj = Surveyor()` | |
| - `pdf_dir`: String, pdf paper storage directory - defaults to `arxiv_data/tarpdfs/` | |
| - `txt_dir`: String, text-converted paper storage directory - defaults to `arxiv_data/fulltext/` | |
| - `img_dir`: String, image image storage directory - defaults to `arxiv_data/images/` | |
| - `tab_dir`: String, tables storage directory - defaults to `arxiv_data/tables/` | |
| - `dump_dir`: String, all_output_dir - defaults to `arxiv_dumps/` | |
| - `models_dir`: String, directory to save to huge models, defaults to `saved_models/` | |
| - `title_model_name`: String, title model name/tag in hugging-face, defaults to `Callidior/bert2bert-base-arxiv-titlegen` | |
| - `ex_summ_model_name`: String, extractive summary model name/tag in hugging-face, defaults to `allenai/scibert_scivocab_uncased` | |
| - `ledmodel_name`: String, led model(for abstractive summary) name/tag in hugging-face, defaults to `allenai/led-large-16384-arxiv` | |
| - `embedder_name`: String, sentence embedder name/tag in hugging-face, defaults to `paraphrase-MiniLM-L6-v2` | |
| - `nlp_name`: String, spacy model name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_scibert` | |
| - `similarity_nlp_name`: String, spacy downstream trained model(for similarity) name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_lg` | |
| - `kw_model_name`: String, keyword extraction model name/tag in hugging-face, defaults to `distilbert-base-nli-mean-tokens` | |
| - `high_gpu`: Bool, High GPU usage permitted, defaults to `False` | |
| - `refresh_models`: Bool, Refresh model downloads with given names (needs atleast one model name param above), defaults to False | |
| > during survey generation with `surveyor_obj.survey(query="my_research_query")` | |
| - `max_search`: int maximium number of papers to gaze at - defaults to `100` | |
| - `num_papers`: int maximium number of papers to download and analyse - defaults to `25` | |
| #### Artifacts generated (zipped): | |
| - Detailed survey draft paper as txt file | |
| - A curated list of top 25+ papers as pdfs and txts | |
| - Images extracted from above papers as jpegs, bmps etc | |
| - Heading/Section wise highlights extracted from above papers as a re-usable pure python joblib dump | |
| - Tables extracted from papers(optional) | |
| - Corpus of metadata highlights/text of top 100 papers as a re-usable pure python joblib dump | |
| Please cite this repo if it helped you :) | |