Sunil Sarolkar
updated image references
0f38fdf
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel
from PIL import Image
import requests
import time
import io
import fitz # PyMuPDF for PDF support
import matplotlib.pyplot as plt
# Define model repository IDs
MODELS = {
"Pixtral-12B": "mistralai/Pixtral-12B-2409",
"InternVL-3.5": "OpenGVLab/InternVL3_5-241B-A28B",
"Aria-7B": "Aria-7B" # Replace with actual model ID when public
}
MODEL_CACHE = {}
def load_model(model_id):
if model_id not in MODEL_CACHE:
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model = AutoModel.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
MODEL_CACHE[model_id] = (processor, model)
return MODEL_CACHE[model_id]
def convert_pdf_to_image(pdf_bytes):
pdf_doc = fitz.open(stream=pdf_bytes, filetype="pdf")
page = pdf_doc.load_page(0)
pix = page.get_pixmap(dpi=150)
image_bytes = pix.tobytes("png")
image = Image.open(io.BytesIO(image_bytes))
return image
def load_image_from_url(url):
response = requests.get(url)
if response.status_code != 200:
raise ValueError(f"Failed to load image from {url}")
return Image.open(io.BytesIO(response.content))
def compare_models(input_url, prompt):
if not input_url or not prompt:
return {name: "Please provide both image/PDF URL and prompt." for name in MODELS}, None
# Load image or PDF from URL
if input_url.lower().endswith('.pdf'):
pdf_data = requests.get(input_url).content
image = convert_pdf_to_image(pdf_data)
else:
image = load_image_from_url(input_url)
image.thumbnail((512, 512))
latency_data = {}
results = {}
for name, model_id in MODELS.items():
try:
processor, model = load_model(model_id)
start = time.time()
if hasattr(model, 'chat'):
text = model.chat(processor.tokenizer, image=image, query=prompt)
else:
inputs = processor(prompt, image, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(**inputs, max_new_tokens=128)
text = processor.decode(outputs[0], skip_special_tokens=True)
elapsed = time.time() - start
results[name] = f"🧠 {text}\n\n⏱️ {elapsed:.2f}s"
latency_data[name] = elapsed
except Exception as e:
results[name] = f"❌ Error: {str(e)}"
latency_data[name] = 0
return [results.get(name, "Model not loaded.") for name in MODELS], latency_data
def plot_latency(latency_data):
if not latency_data:
return None
plt.figure(figsize=(6, 3))
plt.bar(latency_data.keys(), latency_data.values())
plt.title("Model Inference Latency (s)")
plt.ylabel("Seconds")
plt.tight_layout()
return plt
def build_ui():
with gr.Blocks(title="Multimodal Model Comparator (Online Images)") as demo:
gr.Markdown("""
# 🌐 Multimodal Model Comparator (Online Images)
Enter a **URL** for an image or PDF (must be accessible via HTTPS) and provide a question.
The app compares outputs from **Pixtral-12B**, **InternVL-3.5**, and **Aria-7B** side-by-side.
_Licenses: Apache 2.0 / MIT β€” safe for research and demo use._
""")
with gr.Row():
url_input = gr.Textbox(label="Image or PDF URL", placeholder="https://example.com/sample.jpg")
prompt_input = gr.Textbox(label="Prompt", placeholder="Ask something about the image or PDF...")
with gr.Row():
pixtral_out = gr.Textbox(label="Pixtral Output")
internvl_out = gr.Textbox(label="InternVL Output")
aria_out = gr.Textbox(label="Aria Output")
latency_plot = gr.Plot(label="Latency Comparison")
def process(input_url, prompt):
outputs, latency_data = compare_models(input_url, prompt)
plot = plot_latency(latency_data)
return outputs[0], outputs[1], outputs[2], plot
run_button = gr.Button("Run Comparison")
run_button.click(fn=process, inputs=[url_input, prompt_input], outputs=[pixtral_out, internvl_out, aria_out, latency_plot])
gr.Examples(
examples=[
["https://upload.wikimedia.org/wikipedia/commons/9/99/Unofficial_2023_G20_Logo.png", "Describe this image."],
["https://upload.wikimedia.org/wikipedia/commons/3/3f/Fronalpstock_big.jpg", "What mountain scene is this?"],
["https://arxiv.org/pdf/1706.03762.pdf", "What is this paper about?"],
],
inputs=[url_input, prompt_input]
)
return demo
if __name__ == "__main__":
demo = build_ui()
demo.launch()