File size: 9,364 Bytes
372980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from typing import Optional, Union, Tuple
from dataclasses import dataclass

import torch
from torch import nn
from torch import Tensor
from transformers import PreTrainedModel
from transformers.utils import logging, ModelOutput

from torchvision.models import vgg16, VGG16_Weights
import torch.nn.functional as F

from einops import rearrange

from .configuration_vae import VAEConfig, EncoderType, DecoderType


logger = logging.get_logger(__name__)


@dataclass
class VAEOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    reconstruction: torch.FloatTensor = None
    mse_loss: Optional[torch.FloatTensor] = None
    l1_loss: Optional[torch.FloatTensor] = None
    perceptual_loss: Optional[torch.FloatTensor] = None
    dino_loss: Optional[torch.FloatTensor] = None
    kl_loss: Optional[torch.FloatTensor] = None


class Vgg16(nn.Module):
    # ref https://github.com/dxyang/StyleTransfer/blob/master/vgg.py
    def __init__(self, layers):
        super().__init__()
        features = vgg16(weights=VGG16_Weights.DEFAULT).features
        self.to_relu_1_2 = nn.Sequential() 
        self.to_relu_2_2 = nn.Sequential() 
        self.to_relu_3_3 = nn.Sequential()
        self.to_relu_4_3 = nn.Sequential()

        for x in range(4):
            self.to_relu_1_2.add_module(str(x), features[x])
        for x in range(4, 9):
            self.to_relu_2_2.add_module(str(x), features[x])
        for x in range(9, 16):
            self.to_relu_3_3.add_module(str(x), features[x])
        for x in range(16, 23):
            self.to_relu_4_3.add_module(str(x), features[x])

        # don't need the gradients, just want the features
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, x):
        h = self.to_relu_1_2(x)
        h_relu_1_2 = h
        h = self.to_relu_2_2(h)
        h_relu_2_2 = h
        h = self.to_relu_3_3(h)
        h_relu_3_3 = h
        h = self.to_relu_4_3(h)
        h_relu_4_3 = h
        out = (h_relu_1_2, h_relu_2_2, h_relu_3_3, h_relu_4_3)
        return out


class PerceptualLoss(nn.Module):
    def __init__(self, layers=(3, 8, 15, 22), unnorm_mean=None, unnorm_std=None, weights=None):
        super().__init__()
        self.vgg = Vgg16(layers=layers)
        self.layers = layers
        self.weights = weights or [1.0 / len(layers)] * len(layers)

    def forward(self, x, y):
        x_vgg = self.vgg(x)
        y_vgg = self.vgg(y)
        loss = 0.0
        for x_vgg_layer, y_vgg_layer in zip(x_vgg, y_vgg):
            loss += F.mse_loss(x_vgg_layer, y_vgg_layer)
        return loss

class DinoLoss(nn.Module):
    def __init__(self, patch_size, use_large=False):
        super().__init__()
        size = 'b' if use_large else 's'
        dino = f'dino_vit{size}{patch_size}'
        self.vit = torch.hub.load('facebookresearch/dino:main', dino)
        print('use ', dino)
        self.vit.eval()
        for param in self.vit.parameters():
            param.requires_grad = False

    def forward(self, gt, embed):
        with torch.no_grad():
            dino_features = self.vit.prepare_tokens(gt)
            for blk in self.vit.blocks:
                dino_features = blk(dino_features)
            dino_features = self.vit.norm(dino_features)
            dino_features = dino_features[:, 1:]
        embed_features = rearrange(embed, 'b c h w -> b (h w) c').contiguous()
        dtype = embed.dtype
        dino_loss = 1 - F.cosine_similarity(dino_features.to(torch.float32), embed_features.to(torch.float32), dim=2)
        dino_loss = dino_loss.mean()
        dino_loss = dino_loss.to(dtype)
        return dino_loss


class VAEModel(PreTrainedModel):
    config_class = VAEConfig
    main_input_name = "s0_img"

    def __init__(self, config: VAEConfig):
        super().__init__(config)
        dict_config = config.to_dict()
        self.encoder = EncoderType[config.encoder_type].value(**dict_config)
        enc_out_dim = self.config.z_channels * (self.config.resolution[0] // (2 ** (len(self.config.channels_mult) - 1))) ** 2
        latent_dim = 64
        self.cond_mlp = nn.Sequential(
            nn.Linear(enc_out_dim * 2, config.z_channels),
            nn.ReLU(),
            nn.Linear(config.z_channels, config.z_channels),
            nn.ReLU(),
            nn.Linear(config.z_channels, latent_dim * 2),
        )
        self.in_mlp = nn.Sequential(
            nn.Linear(enc_out_dim, config.z_channels),
            nn.ReLU(),
            nn.Linear(config.z_channels, config.z_channels),
            nn.ReLU(),
            nn.Linear(config.z_channels, latent_dim * 2),
        )
        self.cond_mlp_out = nn.Sequential(
            nn.Linear(latent_dim + enc_out_dim, config.z_channels),
            nn.ReLU(),
            nn.Linear(config.z_channels, config.z_channels),
            nn.ReLU(),
            nn.Linear(config.z_channels, enc_out_dim),
        )
        self.out_mlp = nn.Sequential(
            nn.Linear(latent_dim, config.z_channels),
            nn.ReLU(),
            nn.Linear(config.z_channels, config.z_channels),
            nn.ReLU(),
            nn.Linear(config.z_channels, enc_out_dim),
        )
        self.decoder = DecoderType[config.decoder_type].value(**dict_config)
        if config.w_perceptual > 0:
            self.perceptual_loss = PerceptualLoss(
                unnorm_mean=config.image_mean,
                unnorm_std=config.image_std
            )
        if config.w_dino > 0:
            assert config.z_channels in [384, 768]
            patch_size = 2 ** (len(config.channels_mult) - 1)
            self.dino_loss = DinoLoss(patch_size=patch_size)
        self.log_state = {
            "loss": None,
            "mse_loss": None,
            "l1_loss": None,
            "perceptual_loss": None,
            "dino_loss": None,
            "gt": None,
            "recon": None,
        }
        self.post_init()

    def encode(self, s0_img: Tensor, s1_img: Tensor, a0: Tensor) -> tuple[Tensor, Tensor, Tensor, Tensor]:
        # s0 = self.encoder(s0_img).reshape(s0_img.shape[0], -1)
        s0 = None
        s1 = self.encoder(s1_img).reshape(s1_img.shape[0], -1)
        # s1_mean_var = self.cond_mlp(torch.cat([s0, s1], dim=1))
        s1_mean_var = self.in_mlp(s1)
        s1_mean, s1_logvar = s1_mean_var.chunk(2, dim=1)
        s1_stddev = torch.exp(s1_logvar * 0.5)
        s1_latent = s1_mean + s1_stddev * torch.randn_like(s1_mean)
        return s1_latent, s0, s1_mean, s1_logvar

    def decode(self, s1_latent: Tensor, s0: Tensor) -> Tensor:
        quant_h = int(self.config.resolution[0] / (2 ** (len(self.config.channels_mult) - 1)))
        quant_w = int(self.config.resolution[1] / (2 ** (len(self.config.channels_mult) - 1)))
        # s1_latent = self.cond_mlp_out(torch.cat([s1_latent, s0], dim=1)).reshape(s1_latent.shape[0], self.config.z_channels, quant_h, quant_w)
        s1_latent = self.out_mlp(s1_latent).reshape(s1_latent.shape[0], self.config.z_channels, quant_h, quant_w)
        return self.decoder(s1_latent)

    def forward(self,
                s0_img: Tensor,
                s1_img: Tensor,
                action: Tensor,
                return_loss: bool = True,
                return_dict: Optional[bool] = None,
                ) -> Union[Tuple, VAEOutput]:
        return_dict = return_dict if return_dict is not None else False
        s1_latent, s0, s1_mean, s1_logvar = self.encode(s0_img, s1_img, action)
        recon = self.decode(s1_latent, s0)

        loss = None
        if return_loss:
            # recon loss
            mse_loss = F.mse_loss(recon, s1_img)
            l1_loss = F.l1_loss(recon, s1_img)
            if self.config.w_perceptual > 0:
                perceptual_loss = self.perceptual_loss(recon, s1_img)
            else:
                perceptual_loss = torch.zeros_like(mse_loss).to(mse_loss.device)
            if self.config.w_dino > 0:
                dino_loss = self.dino_loss(s1_img, None)
            else:
                dino_loss = torch.zeros_like(mse_loss).to(mse_loss.device)
            # kl loss
            kl_loss = torch.mean(-0.5 * torch.sum(1 + s1_logvar - s1_mean**2 - s1_logvar.exp(), dim=1))

            loss = self.config.w_mse * mse_loss + \
                self.config.w_l1 * l1_loss + \
                self.config.w_perceptual * perceptual_loss + \
                self.config.w_dino * dino_loss + \
                self.config.w_kl * kl_loss
        if not return_dict:
            self.log_state["loss"] = loss.item()
            self.log_state["mse_loss"] = mse_loss.item()
            self.log_state["l1_loss"] = l1_loss.item()
            self.log_state["perceptual_loss"] = perceptual_loss.item()
            self.log_state["dino_loss"] = dino_loss.item()
            self.log_state["kl_loss"] = kl_loss.item()
            self.log_state["gt"] = s0_img.clone().detach().cpu()[:4].to(torch.float32)
            self.log_state["recon"] = recon.clone().detach().cpu()[:4].to(torch.float32)
            return ((loss,) + (recon,)) if loss is not None else recon
        return VAEOutput(
            loss=loss,
            reconstruction=recon,
            mse_loss=mse_loss,
            l1_loss=l1_loss,
            perceptual_loss=perceptual_loss,
            dino_loss=dino_loss,
        )

    def get_last_layer(self):
        raise NotImplementedError