distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4369
  • Accuracy: {'accuracy': 0.8268876611418048}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5753 1.0 10744 0.5390 {'accuracy': 0.7955801104972375}
0.5916 2.0 21488 0.4989 {'accuracy': 0.8158379373848987}
0.588 3.0 32232 0.4547 {'accuracy': 0.7937384898710865}
0.5735 4.0 42976 0.4249 {'accuracy': 0.8029465930018416}
0.5573 5.0 53720 0.4652 {'accuracy': 0.8066298342541437}
0.5945 6.0 64464 0.4789 {'accuracy': 0.8176795580110497}
0.5735 7.0 75208 0.4329 {'accuracy': 0.8416206261510129}
0.5498 8.0 85952 0.4656 {'accuracy': 0.8176795580110497}
0.5794 9.0 96696 0.4467 {'accuracy': 0.8176795580110497}
0.5251 10.0 107440 0.4369 {'accuracy': 0.8268876611418048}

Framework versions

  • PEFT 0.17.1
  • Transformers 4.57.0
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tanjinadnanabir/distilbert-base-uncased-lora-text-classification

Adapter
(341)
this model