File size: 1,915 Bytes
0c4d3ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: punctuation-nilc-bert-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# punctuation-nilc-bert-large
This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1585
- Precision: 0.9053
- Recall: 0.8923
- F1: 0.8988
- Accuracy: 0.9755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0742 | 1.0 | 1172 | 0.0653 | 0.9194 | 0.8702 | 0.8941 | 0.9742 |
| 0.0396 | 2.0 | 2344 | 0.0773 | 0.9088 | 0.8834 | 0.8959 | 0.9748 |
| 0.0153 | 3.0 | 3516 | 0.1171 | 0.8996 | 0.8817 | 0.8906 | 0.9739 |
| 0.0059 | 4.0 | 4688 | 0.1390 | 0.9174 | 0.8719 | 0.8941 | 0.9747 |
| 0.0024 | 5.0 | 5860 | 0.1585 | 0.9053 | 0.8923 | 0.8988 | 0.9755 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|