tizzymouse commited on
Commit
4d8ecf4
·
verified ·
1 Parent(s): a1b00d2

Upload policy weights, train config and readme

Browse files
Files changed (4) hide show
  1. README.md +62 -0
  2. config.json +61 -0
  3. model.safetensors +3 -0
  4. train_config.json +183 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets: tizzymouse/hil-serl2_cropped_resized
3
+ library_name: lerobot
4
+ license: apache-2.0
5
+ model_name: reward_classifier
6
+ pipeline_tag: robotics
7
+ tags:
8
+ - lerobot
9
+ - reward_classifier
10
+ - robotics
11
+ ---
12
+
13
+ # Model Card for reward_classifier
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+ A reward classifier is a lightweight neural network that scores observations or trajectories for task success, providing a learned reward signal or offline evaluation when explicit rewards are unavailable.
19
+
20
+
21
+ This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
22
+ See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
23
+
24
+ ---
25
+
26
+ ## How to Get Started with the Model
27
+
28
+ For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
29
+ Below is the short version on how to train and run inference/eval:
30
+
31
+ ### Train from scratch
32
+
33
+ ```bash
34
+ lerobot-train \
35
+ --dataset.repo_id=${HF_USER}/<dataset> \
36
+ --policy.type=act \
37
+ --output_dir=outputs/train/<desired_policy_repo_id> \
38
+ --job_name=lerobot_training \
39
+ --policy.device=cuda \
40
+ --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
41
+ --wandb.enable=true
42
+ ```
43
+
44
+ _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
45
+
46
+ ### Evaluate the policy/run inference
47
+
48
+ ```bash
49
+ lerobot-record \
50
+ --robot.type=so100_follower \
51
+ --dataset.repo_id=<hf_user>/eval_<dataset> \
52
+ --policy.path=<hf_user>/<desired_policy_repo_id> \
53
+ --episodes=10
54
+ ```
55
+
56
+ Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
57
+
58
+ ---
59
+
60
+ ## Model Details
61
+
62
+ - **License:** apache-2.0
config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "reward_classifier",
3
+ "n_obs_steps": 1,
4
+ "input_features": {
5
+ "observation.images.front": {
6
+ "type": "VISUAL",
7
+ "shape": [
8
+ 3,
9
+ 128,
10
+ 128
11
+ ]
12
+ },
13
+ "observation.images.wrist": {
14
+ "type": "VISUAL",
15
+ "shape": [
16
+ 3,
17
+ 128,
18
+ 128
19
+ ]
20
+ },
21
+ "observation.images.top": {
22
+ "type": "VISUAL",
23
+ "shape": [
24
+ 3,
25
+ 128,
26
+ 128
27
+ ]
28
+ }
29
+ },
30
+ "output_features": {
31
+ "action": {
32
+ "type": "ACTION",
33
+ "shape": [
34
+ 6
35
+ ]
36
+ }
37
+ },
38
+ "device": "cpu",
39
+ "use_amp": false,
40
+ "push_to_hub": true,
41
+ "repo_id": "tizzymouse/hil-serl2-reward-classifier",
42
+ "private": null,
43
+ "tags": null,
44
+ "license": null,
45
+ "pretrained_path": null,
46
+ "name": "reward_classifier",
47
+ "num_classes": 2,
48
+ "hidden_dim": 256,
49
+ "latent_dim": 256,
50
+ "image_embedding_pooling_dim": 8,
51
+ "dropout_rate": 0.1,
52
+ "model_name": "helper2424/resnet10",
53
+ "model_type": "cnn",
54
+ "num_cameras": 3,
55
+ "learning_rate": 0.0001,
56
+ "weight_decay": 0.01,
57
+ "grad_clip_norm": 1.0,
58
+ "normalization_mapping": {
59
+ "VISUAL": "MEAN_STD"
60
+ }
61
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:546c534d7dd63e3f0f381b61719a1aa7a27700bc9c9e4f8c0659ef57f873a7d0
3
+ size 33810140
train_config.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset": {
3
+ "repo_id": "tizzymouse/hil-serl2_cropped_resized",
4
+ "root": null,
5
+ "episodes": null,
6
+ "image_transforms": {
7
+ "enable": false,
8
+ "max_num_transforms": 3,
9
+ "random_order": false,
10
+ "tfs": {
11
+ "brightness": {
12
+ "weight": 1.0,
13
+ "type": "ColorJitter",
14
+ "kwargs": {
15
+ "brightness": [
16
+ 0.8,
17
+ 1.2
18
+ ]
19
+ }
20
+ },
21
+ "contrast": {
22
+ "weight": 1.0,
23
+ "type": "ColorJitter",
24
+ "kwargs": {
25
+ "contrast": [
26
+ 0.8,
27
+ 1.2
28
+ ]
29
+ }
30
+ },
31
+ "saturation": {
32
+ "weight": 1.0,
33
+ "type": "ColorJitter",
34
+ "kwargs": {
35
+ "saturation": [
36
+ 0.5,
37
+ 1.5
38
+ ]
39
+ }
40
+ },
41
+ "hue": {
42
+ "weight": 1.0,
43
+ "type": "ColorJitter",
44
+ "kwargs": {
45
+ "hue": [
46
+ -0.05,
47
+ 0.05
48
+ ]
49
+ }
50
+ },
51
+ "sharpness": {
52
+ "weight": 1.0,
53
+ "type": "SharpnessJitter",
54
+ "kwargs": {
55
+ "sharpness": [
56
+ 0.5,
57
+ 1.5
58
+ ]
59
+ }
60
+ },
61
+ "affine": {
62
+ "weight": 1.0,
63
+ "type": "RandomAffine",
64
+ "kwargs": {
65
+ "degrees": [
66
+ -5.0,
67
+ 5.0
68
+ ],
69
+ "translate": [
70
+ 0.05,
71
+ 0.05
72
+ ]
73
+ }
74
+ }
75
+ }
76
+ },
77
+ "revision": null,
78
+ "use_imagenet_stats": true,
79
+ "video_backend": "pyav",
80
+ "streaming": false
81
+ },
82
+ "env": null,
83
+ "policy": {
84
+ "type": "reward_classifier",
85
+ "n_obs_steps": 1,
86
+ "input_features": {
87
+ "observation.images.front": {
88
+ "type": "VISUAL",
89
+ "shape": [
90
+ 3,
91
+ 128,
92
+ 128
93
+ ]
94
+ },
95
+ "observation.images.wrist": {
96
+ "type": "VISUAL",
97
+ "shape": [
98
+ 3,
99
+ 128,
100
+ 128
101
+ ]
102
+ },
103
+ "observation.images.top": {
104
+ "type": "VISUAL",
105
+ "shape": [
106
+ 3,
107
+ 128,
108
+ 128
109
+ ]
110
+ }
111
+ },
112
+ "output_features": {
113
+ "action": {
114
+ "type": "ACTION",
115
+ "shape": [
116
+ 6
117
+ ]
118
+ }
119
+ },
120
+ "device": "cpu",
121
+ "use_amp": false,
122
+ "push_to_hub": true,
123
+ "repo_id": "tizzymouse/hil-serl2-reward-classifier",
124
+ "private": null,
125
+ "tags": null,
126
+ "license": null,
127
+ "pretrained_path": null,
128
+ "name": "reward_classifier",
129
+ "num_classes": 2,
130
+ "hidden_dim": 256,
131
+ "latent_dim": 256,
132
+ "image_embedding_pooling_dim": 8,
133
+ "dropout_rate": 0.1,
134
+ "model_name": "helper2424/resnet10",
135
+ "model_type": "cnn",
136
+ "num_cameras": 3,
137
+ "learning_rate": 0.0001,
138
+ "weight_decay": 0.01,
139
+ "grad_clip_norm": 1.0,
140
+ "normalization_mapping": {
141
+ "VISUAL": "MEAN_STD"
142
+ }
143
+ },
144
+ "output_dir": "outputs/train/2025-10-23/13-56-12_hil-serl2-reward-classifier",
145
+ "job_name": "hil-serl2-reward-classifier",
146
+ "resume": false,
147
+ "seed": 2,
148
+ "num_workers": 4,
149
+ "batch_size": 16,
150
+ "steps": 5000,
151
+ "eval_freq": 1000,
152
+ "log_freq": 10,
153
+ "save_checkpoint": true,
154
+ "save_freq": 1000,
155
+ "use_policy_training_preset": true,
156
+ "optimizer": {
157
+ "type": "adamw",
158
+ "lr": 0.0001,
159
+ "weight_decay": 0.01,
160
+ "grad_clip_norm": 1.0,
161
+ "betas": [
162
+ 0.9,
163
+ 0.999
164
+ ],
165
+ "eps": 1e-08
166
+ },
167
+ "scheduler": null,
168
+ "eval": {
169
+ "n_episodes": 50,
170
+ "batch_size": 50,
171
+ "use_async_envs": false
172
+ },
173
+ "wandb": {
174
+ "enable": false,
175
+ "disable_artifact": false,
176
+ "project": "hil-serl2-reward-classifier",
177
+ "entity": null,
178
+ "notes": null,
179
+ "run_id": null,
180
+ "mode": null
181
+ },
182
+ "checkpoint_path": null
183
+ }