|
|
---
|
|
|
language:
|
|
|
- en
|
|
|
license: apache-2.0
|
|
|
tags:
|
|
|
- sentence-transformers
|
|
|
- sparse-encoder
|
|
|
- sparse
|
|
|
- splade
|
|
|
- generated_from_trainer
|
|
|
- dataset_size:99000
|
|
|
- loss:SpladeLoss
|
|
|
- loss:SparseMultipleNegativesRankingLoss
|
|
|
- loss:FlopsLoss
|
|
|
base_model: distilbert/distilbert-base-uncased
|
|
|
widget:
|
|
|
- text: How do I know if a girl likes me at school?
|
|
|
- text: What are some five star hotel in Jaipur?
|
|
|
- text: Is it normal to fantasize your wife having sex with another man?
|
|
|
- text: What is the Sahara, and how do the average temperatures there compare to the
|
|
|
ones in the Simpson Desert?
|
|
|
- text: What are Hillary Clinton's most recognized accomplishments while Secretary
|
|
|
of State?
|
|
|
datasets:
|
|
|
- sentence-transformers/quora-duplicates
|
|
|
pipeline_tag: feature-extraction
|
|
|
library_name: sentence-transformers
|
|
|
metrics:
|
|
|
- cosine_accuracy
|
|
|
- cosine_accuracy_threshold
|
|
|
- cosine_f1
|
|
|
- cosine_f1_threshold
|
|
|
- cosine_precision
|
|
|
- cosine_recall
|
|
|
- cosine_ap
|
|
|
- cosine_mcc
|
|
|
- dot_accuracy
|
|
|
- dot_accuracy_threshold
|
|
|
- dot_f1
|
|
|
- dot_f1_threshold
|
|
|
- dot_precision
|
|
|
- dot_recall
|
|
|
- dot_ap
|
|
|
- dot_mcc
|
|
|
- euclidean_accuracy
|
|
|
- euclidean_accuracy_threshold
|
|
|
- euclidean_f1
|
|
|
- euclidean_f1_threshold
|
|
|
- euclidean_precision
|
|
|
- euclidean_recall
|
|
|
- euclidean_ap
|
|
|
- euclidean_mcc
|
|
|
- manhattan_accuracy
|
|
|
- manhattan_accuracy_threshold
|
|
|
- manhattan_f1
|
|
|
- manhattan_f1_threshold
|
|
|
- manhattan_precision
|
|
|
- manhattan_recall
|
|
|
- manhattan_ap
|
|
|
- manhattan_mcc
|
|
|
- max_accuracy
|
|
|
- max_accuracy_threshold
|
|
|
- max_f1
|
|
|
- max_f1_threshold
|
|
|
- max_precision
|
|
|
- max_recall
|
|
|
- max_ap
|
|
|
- max_mcc
|
|
|
- active_dims
|
|
|
- sparsity_ratio
|
|
|
- dot_accuracy@1
|
|
|
- dot_accuracy@3
|
|
|
- dot_accuracy@5
|
|
|
- dot_accuracy@10
|
|
|
- dot_precision@1
|
|
|
- dot_precision@3
|
|
|
- dot_precision@5
|
|
|
- dot_precision@10
|
|
|
- dot_recall@1
|
|
|
- dot_recall@3
|
|
|
- dot_recall@5
|
|
|
- dot_recall@10
|
|
|
- dot_ndcg@10
|
|
|
- dot_mrr@10
|
|
|
- dot_map@100
|
|
|
- query_active_dims
|
|
|
- query_sparsity_ratio
|
|
|
- corpus_active_dims
|
|
|
- corpus_sparsity_ratio
|
|
|
co2_eq_emissions:
|
|
|
emissions: 29.19330199735101
|
|
|
energy_consumed: 0.07510458396754072
|
|
|
source: codecarbon
|
|
|
training_type: fine-tuning
|
|
|
on_cloud: false
|
|
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
|
ram_total_size: 31.777088165283203
|
|
|
hours_used: 0.306
|
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
|
model-index:
|
|
|
- name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
|
|
|
results:
|
|
|
- task:
|
|
|
type: sparse-binary-classification
|
|
|
name: Sparse Binary Classification
|
|
|
dataset:
|
|
|
name: quora duplicates dev
|
|
|
type: quora_duplicates_dev
|
|
|
metrics:
|
|
|
- type: cosine_accuracy
|
|
|
value: 0.759
|
|
|
name: Cosine Accuracy
|
|
|
- type: cosine_accuracy_threshold
|
|
|
value: 0.8012633323669434
|
|
|
name: Cosine Accuracy Threshold
|
|
|
- type: cosine_f1
|
|
|
value: 0.6741573033707865
|
|
|
name: Cosine F1
|
|
|
- type: cosine_f1_threshold
|
|
|
value: 0.542455792427063
|
|
|
name: Cosine F1 Threshold
|
|
|
- type: cosine_precision
|
|
|
value: 0.528169014084507
|
|
|
name: Cosine Precision
|
|
|
- type: cosine_recall
|
|
|
value: 0.9316770186335404
|
|
|
name: Cosine Recall
|
|
|
- type: cosine_ap
|
|
|
value: 0.6875984052094628
|
|
|
name: Cosine Ap
|
|
|
- type: cosine_mcc
|
|
|
value: 0.5059561809366392
|
|
|
name: Cosine Mcc
|
|
|
- type: dot_accuracy
|
|
|
value: 0.754
|
|
|
name: Dot Accuracy
|
|
|
- type: dot_accuracy_threshold
|
|
|
value: 47.276466369628906
|
|
|
name: Dot Accuracy Threshold
|
|
|
- type: dot_f1
|
|
|
value: 0.6759581881533101
|
|
|
name: Dot F1
|
|
|
- type: dot_f1_threshold
|
|
|
value: 40.955284118652344
|
|
|
name: Dot F1 Threshold
|
|
|
- type: dot_precision
|
|
|
value: 0.5398886827458256
|
|
|
name: Dot Precision
|
|
|
- type: dot_recall
|
|
|
value: 0.9037267080745341
|
|
|
name: Dot Recall
|
|
|
- type: dot_ap
|
|
|
value: 0.6070585464263578
|
|
|
name: Dot Ap
|
|
|
- type: dot_mcc
|
|
|
value: 0.5042382773971489
|
|
|
name: Dot Mcc
|
|
|
- type: euclidean_accuracy
|
|
|
value: 0.677
|
|
|
name: Euclidean Accuracy
|
|
|
- type: euclidean_accuracy_threshold
|
|
|
value: -14.295218467712402
|
|
|
name: Euclidean Accuracy Threshold
|
|
|
- type: euclidean_f1
|
|
|
value: 0.48599545798637395
|
|
|
name: Euclidean F1
|
|
|
- type: euclidean_f1_threshold
|
|
|
value: -0.5385364294052124
|
|
|
name: Euclidean F1 Threshold
|
|
|
- type: euclidean_precision
|
|
|
value: 0.3213213213213213
|
|
|
name: Euclidean Precision
|
|
|
- type: euclidean_recall
|
|
|
value: 0.9968944099378882
|
|
|
name: Euclidean Recall
|
|
|
- type: euclidean_ap
|
|
|
value: 0.20430811061248494
|
|
|
name: Euclidean Ap
|
|
|
- type: euclidean_mcc
|
|
|
value: -0.04590966956831287
|
|
|
name: Euclidean Mcc
|
|
|
- type: manhattan_accuracy
|
|
|
value: 0.677
|
|
|
name: Manhattan Accuracy
|
|
|
- type: manhattan_accuracy_threshold
|
|
|
value: -163.6865234375
|
|
|
name: Manhattan Accuracy Threshold
|
|
|
- type: manhattan_f1
|
|
|
value: 0.48599545798637395
|
|
|
name: Manhattan F1
|
|
|
- type: manhattan_f1_threshold
|
|
|
value: -2.7509355545043945
|
|
|
name: Manhattan F1 Threshold
|
|
|
- type: manhattan_precision
|
|
|
value: 0.3213213213213213
|
|
|
name: Manhattan Precision
|
|
|
- type: manhattan_recall
|
|
|
value: 0.9968944099378882
|
|
|
name: Manhattan Recall
|
|
|
- type: manhattan_ap
|
|
|
value: 0.20563864564607998
|
|
|
name: Manhattan Ap
|
|
|
- type: manhattan_mcc
|
|
|
value: -0.04590966956831287
|
|
|
name: Manhattan Mcc
|
|
|
- type: max_accuracy
|
|
|
value: 0.759
|
|
|
name: Max Accuracy
|
|
|
- type: max_accuracy_threshold
|
|
|
value: 47.276466369628906
|
|
|
name: Max Accuracy Threshold
|
|
|
- type: max_f1
|
|
|
value: 0.6759581881533101
|
|
|
name: Max F1
|
|
|
- type: max_f1_threshold
|
|
|
value: 40.955284118652344
|
|
|
name: Max F1 Threshold
|
|
|
- type: max_precision
|
|
|
value: 0.5398886827458256
|
|
|
name: Max Precision
|
|
|
- type: max_recall
|
|
|
value: 0.9968944099378882
|
|
|
name: Max Recall
|
|
|
- type: max_ap
|
|
|
value: 0.6875984052094628
|
|
|
name: Max Ap
|
|
|
- type: max_mcc
|
|
|
value: 0.5059561809366392
|
|
|
name: Max Mcc
|
|
|
- type: active_dims
|
|
|
value: 83.36341094970703
|
|
|
name: Active Dims
|
|
|
- type: sparsity_ratio
|
|
|
value: 0.9972687434981421
|
|
|
name: Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoMSMARCO
|
|
|
type: NanoMSMARCO
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.24
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.44
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.56
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.74
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.24
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.14666666666666667
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.11200000000000002
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.07400000000000001
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.24
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.44
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.56
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.74
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.46883808093835555
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.3849920634920634
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.39450094910993877
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 84.87999725341797
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9972190551977781
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 104.35554504394531
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9965809729033503
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.24
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.44
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.6
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.74
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.24
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.14666666666666667
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.12000000000000002
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.07400000000000001
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.24
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.44
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.6
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.74
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.46663046446554135
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.3821587301587301
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.39141822290426725
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 94.9000015258789
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9968907672653863
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 115.97699737548828
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9962002163234556
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoNQ
|
|
|
type: NanoNQ
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.18
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.44
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.52
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.58
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.18
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.14666666666666667
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.10400000000000001
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.06000000000000001
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.17
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.41
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.48
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.55
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.3711173352982992
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.32435714285714284
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.32104591506684527
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 76.81999969482422
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9974831269348396
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 139.53028869628906
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9954285338871539
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.18
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.46
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.5
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.64
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.18
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.1533333333333333
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.10000000000000002
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.066
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.17
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.43
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.46
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.61
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.39277722565932277
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.33549999999999996
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.3266050492721919
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 85.72000122070312
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9971915339354989
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 156.10665893554688
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.994885438079564
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoNFCorpus
|
|
|
type: NanoNFCorpus
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.28
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.42
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.46
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.52
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.28
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.24
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.2
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.16
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.010055870806195594
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.03299225609257712
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.043240249260663235
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.0575687615260951
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.1901013298743406
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.3606904761904762
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.06747201795263198
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 92.18000030517578
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9969798833528217
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 196.1699981689453
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.993572832770823
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.3
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.42
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.48
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.52
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.3
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.24666666666666665
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.21600000000000003
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.174
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.020055870806195596
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.03516880470242261
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.07436160102717629
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.08924749441772001
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.2174721143005973
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.3753888888888888
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.08327101018955965
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 101.91999816894531
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9966607693411655
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 217.09109497070312
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9928873895887982
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoQuoraRetrieval
|
|
|
type: NanoQuoraRetrieval
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.9
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.96
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.96
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 1.0
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.9
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.38666666666666655
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.24799999999999997
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.13599999999999998
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.804
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.9053333333333333
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.9326666666666666
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.99
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.940813094731721
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.9366666666666665
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.9174399766899767
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 80.30000305175781
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9973691107053353
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 83.33353424072266
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9972697223563096
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.9
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.96
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 1.0
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 1.0
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.9
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.38666666666666655
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.25599999999999995
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.13599999999999998
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.804
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.9086666666666667
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.97
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.99
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.9434418368741703
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.94
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.9210437710437711
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 87.4000015258789
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9971364916609043
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 90.32620239257812
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.997040619802353
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-nano-beir
|
|
|
name: Sparse Nano BEIR
|
|
|
dataset:
|
|
|
name: NanoBEIR mean
|
|
|
type: NanoBEIR_mean
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.4
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.565
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.625
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.71
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.4
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.22999999999999998
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.166
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.10750000000000001
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.30601396770154893
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.4470813973564776
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.5039767289818324
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.5843921903815238
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.4927174602106791
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.5016765873015872
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.4251147147048482
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 83.54500007629395
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9972627940476937
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 123.28323480743562
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9959608402199255
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.4021664050235479
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.5765463108320251
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.6598116169544741
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.7337833594976453
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.4021664050235479
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.25656724228152794
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.20182103610675042
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.14312715855572997
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.23408727816164185
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.3568914414902249
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.4275402562349963
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.5040607961406979
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.45167521970189345
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.5088102589020956
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.37853024172675503
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 105.61787400444042
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9965396149005816
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 163.73635361872905
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9946354644643625
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoClimateFEVER
|
|
|
type: NanoClimateFEVER
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.14
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.32
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.42
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.52
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.14
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.11333333333333333
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.09200000000000001
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.064
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.07166666666666666
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.14833333333333332
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.19
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.25
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.1928494772790168
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.2526666666666666
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.14153388517603807
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 102.33999633789062
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9966470088350079
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 217.80722045898438
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9928639269884351
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoDBPedia
|
|
|
type: NanoDBPedia
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.56
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.78
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.82
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.88
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.56
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.5133333333333333
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.488
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.436
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.042268334576683116
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.1179684188048045
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.17514937366700764
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.2739338942789917
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.5024388532207343
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.6801666666666667
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.38220472918007364
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 79.80000305175781
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9973854923317031
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 146.68072509765625
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.995194262332165
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoFEVER
|
|
|
type: NanoFEVER
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.64
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.72
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.82
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.88
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.64
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.2533333333333333
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.176
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.09399999999999999
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.6066666666666667
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.7033333333333333
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.8033333333333332
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.8633333333333333
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.7368677901493659
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.7063809523809523
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.697561348294107
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 104.22000122070312
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9965854137598879
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 228.74359130859375
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9925056159062776
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoFiQA2018
|
|
|
type: NanoFiQA2018
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.2
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.28
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.4
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.46
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.2
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.12666666666666665
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.10400000000000001
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.07
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.09469047619047619
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.15076984126984128
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.25362698412698415
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.3211825396825397
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.23331922670891586
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.27135714285714285
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.18392178053045694
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 89.73999786376953
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9970598257694853
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 131.34085083007812
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9956968465097282
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoHotpotQA
|
|
|
type: NanoHotpotQA
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.8
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.9
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.92
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.94
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.8
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.3933333333333333
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.264
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.14200000000000002
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.4
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.59
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.66
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.71
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.6848748058213975
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.8541666666666665
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.6060670580971632
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 111.23999786376953
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9963554158356671
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 166.19056701660156
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9945550564505407
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoSCIDOCS
|
|
|
type: NanoSCIDOCS
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.34
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.56
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.66
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.78
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.34
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.26
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.2
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.14200000000000002
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.07166666666666668
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.16066666666666665
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.20566666666666664
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.2916666666666667
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.2850130343263586
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.47407142857142853
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.20070977606957205
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 113.77999877929688
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9962721971437226
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 226.21810913085938
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9925883589171464
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoArguAna
|
|
|
type: NanoArguAna
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.08
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.32
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.38
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.44
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.08
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.10666666666666666
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.07600000000000001
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.044000000000000004
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.08
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.32
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.38
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.44
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.26512761684329256
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.20850000000000002
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.2135415485154769
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 202.02000427246094
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9933811675423477
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 176.61155700683594
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.994213630921734
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoSciFact
|
|
|
type: NanoSciFact
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.44
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.58
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.7
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.78
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.44
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.19999999999999996
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.14800000000000002
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.08599999999999998
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.415
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.55
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.665
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.76
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.5848481832222858
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.5400476190476191
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.5247408283859897
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 102.4800033569336
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9966424217496581
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 216.64508056640625
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9929020024714499
|
|
|
name: Corpus Sparsity Ratio
|
|
|
- task:
|
|
|
type: sparse-information-retrieval
|
|
|
name: Sparse Information Retrieval
|
|
|
dataset:
|
|
|
name: NanoTouche2020
|
|
|
type: NanoTouche2020
|
|
|
metrics:
|
|
|
- type: dot_accuracy@1
|
|
|
value: 0.40816326530612246
|
|
|
name: Dot Accuracy@1
|
|
|
- type: dot_accuracy@3
|
|
|
value: 0.7551020408163265
|
|
|
name: Dot Accuracy@3
|
|
|
- type: dot_accuracy@5
|
|
|
value: 0.8775510204081632
|
|
|
name: Dot Accuracy@5
|
|
|
- type: dot_accuracy@10
|
|
|
value: 0.9591836734693877
|
|
|
name: Dot Accuracy@10
|
|
|
- type: dot_precision@1
|
|
|
value: 0.40816326530612246
|
|
|
name: Dot Precision@1
|
|
|
- type: dot_precision@3
|
|
|
value: 0.43537414965986393
|
|
|
name: Dot Precision@3
|
|
|
- type: dot_precision@5
|
|
|
value: 0.38367346938775504
|
|
|
name: Dot Precision@5
|
|
|
- type: dot_precision@10
|
|
|
value: 0.3326530612244898
|
|
|
name: Dot Precision@10
|
|
|
- type: dot_recall@1
|
|
|
value: 0.027119934527989286
|
|
|
name: Dot Recall@1
|
|
|
- type: dot_recall@3
|
|
|
value: 0.08468167459585536
|
|
|
name: Dot Recall@3
|
|
|
- type: dot_recall@5
|
|
|
value: 0.12088537223378343
|
|
|
name: Dot Recall@5
|
|
|
- type: dot_recall@10
|
|
|
value: 0.21342642144981977
|
|
|
name: Dot Recall@10
|
|
|
- type: dot_ndcg@10
|
|
|
value: 0.36611722725361623
|
|
|
name: Dot Ndcg@10
|
|
|
- type: dot_mrr@10
|
|
|
value: 0.5941286038224813
|
|
|
name: Dot Mrr@10
|
|
|
- type: dot_map@100
|
|
|
value: 0.24827413478914825
|
|
|
name: Dot Map@100
|
|
|
- type: query_active_dims
|
|
|
value: 97.30612182617188
|
|
|
name: Query Active Dims
|
|
|
- type: query_sparsity_ratio
|
|
|
value: 0.9968119349378752
|
|
|
name: Query Sparsity Ratio
|
|
|
- type: corpus_active_dims
|
|
|
value: 147.016357421875
|
|
|
name: Corpus Active Dims
|
|
|
- type: corpus_sparsity_ratio
|
|
|
value: 0.9951832659255005
|
|
|
name: Corpus Sparsity Ratio
|
|
|
---
|
|
|
|
|
|
# splade-distilbert-base-uncased trained on Quora Duplicates Questions
|
|
|
|
|
|
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
|
|
## Model Details
|
|
|
|
|
|
### Model Description
|
|
|
- **Model Type:** SPLADE Sparse Encoder
|
|
|
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
|
|
|
- **Maximum Sequence Length:** 256 tokens
|
|
|
- **Output Dimensionality:** 30522 dimensions
|
|
|
- **Similarity Function:** Dot Product
|
|
|
- **Training Dataset:**
|
|
|
- [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
|
|
|
- **Language:** en
|
|
|
- **License:** apache-2.0
|
|
|
|
|
|
### Model Sources
|
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
|
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
|
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
|
|
|
|
|
### Full Model Architecture
|
|
|
|
|
|
```
|
|
|
SparseEncoder(
|
|
|
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
|
|
|
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
|
|
)
|
|
|
```
|
|
|
|
|
|
## Usage
|
|
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
|
|
```bash
|
|
|
pip install -U sentence-transformers
|
|
|
```
|
|
|
|
|
|
Then you can load this model and run inference.
|
|
|
```python
|
|
|
from sentence_transformers import SparseEncoder
|
|
|
|
|
|
# Download from the 🤗 Hub
|
|
|
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-quora-duplicates")
|
|
|
# Run inference
|
|
|
sentences = [
|
|
|
'What accomplishments did Hillary Clinton achieve during her time as Secretary of State?',
|
|
|
"What are Hillary Clinton's most recognized accomplishments while Secretary of State?",
|
|
|
'What are Hillary Clinton’s qualifications to be President?',
|
|
|
]
|
|
|
embeddings = model.encode(sentences)
|
|
|
print(embeddings.shape)
|
|
|
# [3, 30522]
|
|
|
|
|
|
# Get the similarity scores for the embeddings
|
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
|
print(similarities)
|
|
|
# tensor([[ 83.9635, 60.9402, 26.0887],
|
|
|
# [ 60.9402, 85.6474, 33.3293],
|
|
|
# [ 26.0887, 33.3293, 104.0980]])
|
|
|
```
|
|
|
|
|
|
<!--
|
|
|
### Direct Usage (Transformers)
|
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
|
|
</details>
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
|
|
</details>
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
### Out-of-Scope Use
|
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
|
-->
|
|
|
|
|
|
## Evaluation
|
|
|
|
|
|
### Metrics
|
|
|
|
|
|
#### Sparse Binary Classification
|
|
|
|
|
|
* Dataset: `quora_duplicates_dev`
|
|
|
* Evaluated with [<code>SparseBinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseBinaryClassificationEvaluator)
|
|
|
|
|
|
| Metric | Value |
|
|
|
|:-----------------------------|:-----------|
|
|
|
| cosine_accuracy | 0.759 |
|
|
|
| cosine_accuracy_threshold | 0.8013 |
|
|
|
| cosine_f1 | 0.6742 |
|
|
|
| cosine_f1_threshold | 0.5425 |
|
|
|
| cosine_precision | 0.5282 |
|
|
|
| cosine_recall | 0.9317 |
|
|
|
| cosine_ap | 0.6876 |
|
|
|
| cosine_mcc | 0.506 |
|
|
|
| dot_accuracy | 0.754 |
|
|
|
| dot_accuracy_threshold | 47.2765 |
|
|
|
| dot_f1 | 0.676 |
|
|
|
| dot_f1_threshold | 40.9553 |
|
|
|
| dot_precision | 0.5399 |
|
|
|
| dot_recall | 0.9037 |
|
|
|
| dot_ap | 0.6071 |
|
|
|
| dot_mcc | 0.5042 |
|
|
|
| euclidean_accuracy | 0.677 |
|
|
|
| euclidean_accuracy_threshold | -14.2952 |
|
|
|
| euclidean_f1 | 0.486 |
|
|
|
| euclidean_f1_threshold | -0.5385 |
|
|
|
| euclidean_precision | 0.3213 |
|
|
|
| euclidean_recall | 0.9969 |
|
|
|
| euclidean_ap | 0.2043 |
|
|
|
| euclidean_mcc | -0.0459 |
|
|
|
| manhattan_accuracy | 0.677 |
|
|
|
| manhattan_accuracy_threshold | -163.6865 |
|
|
|
| manhattan_f1 | 0.486 |
|
|
|
| manhattan_f1_threshold | -2.7509 |
|
|
|
| manhattan_precision | 0.3213 |
|
|
|
| manhattan_recall | 0.9969 |
|
|
|
| manhattan_ap | 0.2056 |
|
|
|
| manhattan_mcc | -0.0459 |
|
|
|
| max_accuracy | 0.759 |
|
|
|
| max_accuracy_threshold | 47.2765 |
|
|
|
| max_f1 | 0.676 |
|
|
|
| max_f1_threshold | 40.9553 |
|
|
|
| max_precision | 0.5399 |
|
|
|
| max_recall | 0.9969 |
|
|
|
| **max_ap** | **0.6876** |
|
|
|
| max_mcc | 0.506 |
|
|
|
| active_dims | 83.3634 |
|
|
|
| sparsity_ratio | 0.9973 |
|
|
|
|
|
|
#### Sparse Information Retrieval
|
|
|
|
|
|
* Datasets: `NanoMSMARCO`, `NanoNQ`, `NanoNFCorpus`, `NanoQuoraRetrieval`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
|
|
|
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
|
|
|
|
|
|
| Metric | NanoMSMARCO | NanoNQ | NanoNFCorpus | NanoQuoraRetrieval | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|
|
|
|:----------------------|:------------|:-----------|:-------------|:-------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:------------|:------------|:---------------|
|
|
|
| dot_accuracy@1 | 0.24 | 0.18 | 0.3 | 0.9 | 0.14 | 0.56 | 0.64 | 0.2 | 0.8 | 0.34 | 0.08 | 0.44 | 0.4082 |
|
|
|
| dot_accuracy@3 | 0.44 | 0.46 | 0.42 | 0.96 | 0.32 | 0.78 | 0.72 | 0.28 | 0.9 | 0.56 | 0.32 | 0.58 | 0.7551 |
|
|
|
| dot_accuracy@5 | 0.6 | 0.5 | 0.48 | 1.0 | 0.42 | 0.82 | 0.82 | 0.4 | 0.92 | 0.66 | 0.38 | 0.7 | 0.8776 |
|
|
|
| dot_accuracy@10 | 0.74 | 0.64 | 0.52 | 1.0 | 0.52 | 0.88 | 0.88 | 0.46 | 0.94 | 0.78 | 0.44 | 0.78 | 0.9592 |
|
|
|
| dot_precision@1 | 0.24 | 0.18 | 0.3 | 0.9 | 0.14 | 0.56 | 0.64 | 0.2 | 0.8 | 0.34 | 0.08 | 0.44 | 0.4082 |
|
|
|
| dot_precision@3 | 0.1467 | 0.1533 | 0.2467 | 0.3867 | 0.1133 | 0.5133 | 0.2533 | 0.1267 | 0.3933 | 0.26 | 0.1067 | 0.2 | 0.4354 |
|
|
|
| dot_precision@5 | 0.12 | 0.1 | 0.216 | 0.256 | 0.092 | 0.488 | 0.176 | 0.104 | 0.264 | 0.2 | 0.076 | 0.148 | 0.3837 |
|
|
|
| dot_precision@10 | 0.074 | 0.066 | 0.174 | 0.136 | 0.064 | 0.436 | 0.094 | 0.07 | 0.142 | 0.142 | 0.044 | 0.086 | 0.3327 |
|
|
|
| dot_recall@1 | 0.24 | 0.17 | 0.0201 | 0.804 | 0.0717 | 0.0423 | 0.6067 | 0.0947 | 0.4 | 0.0717 | 0.08 | 0.415 | 0.0271 |
|
|
|
| dot_recall@3 | 0.44 | 0.43 | 0.0352 | 0.9087 | 0.1483 | 0.118 | 0.7033 | 0.1508 | 0.59 | 0.1607 | 0.32 | 0.55 | 0.0847 |
|
|
|
| dot_recall@5 | 0.6 | 0.46 | 0.0744 | 0.97 | 0.19 | 0.1751 | 0.8033 | 0.2536 | 0.66 | 0.2057 | 0.38 | 0.665 | 0.1209 |
|
|
|
| dot_recall@10 | 0.74 | 0.61 | 0.0892 | 0.99 | 0.25 | 0.2739 | 0.8633 | 0.3212 | 0.71 | 0.2917 | 0.44 | 0.76 | 0.2134 |
|
|
|
| **dot_ndcg@10** | **0.4666** | **0.3928** | **0.2175** | **0.9434** | **0.1928** | **0.5024** | **0.7369** | **0.2333** | **0.6849** | **0.285** | **0.2651** | **0.5848** | **0.3661** |
|
|
|
| dot_mrr@10 | 0.3822 | 0.3355 | 0.3754 | 0.94 | 0.2527 | 0.6802 | 0.7064 | 0.2714 | 0.8542 | 0.4741 | 0.2085 | 0.54 | 0.5941 |
|
|
|
| dot_map@100 | 0.3914 | 0.3266 | 0.0833 | 0.921 | 0.1415 | 0.3822 | 0.6976 | 0.1839 | 0.6061 | 0.2007 | 0.2135 | 0.5247 | 0.2483 |
|
|
|
| query_active_dims | 94.9 | 85.72 | 101.92 | 87.4 | 102.34 | 79.8 | 104.22 | 89.74 | 111.24 | 113.78 | 202.02 | 102.48 | 97.3061 |
|
|
|
| query_sparsity_ratio | 0.9969 | 0.9972 | 0.9967 | 0.9971 | 0.9966 | 0.9974 | 0.9966 | 0.9971 | 0.9964 | 0.9963 | 0.9934 | 0.9966 | 0.9968 |
|
|
|
| corpus_active_dims | 115.977 | 156.1067 | 217.0911 | 90.3262 | 217.8072 | 146.6807 | 228.7436 | 131.3409 | 166.1906 | 226.2181 | 176.6116 | 216.6451 | 147.0164 |
|
|
|
| corpus_sparsity_ratio | 0.9962 | 0.9949 | 0.9929 | 0.997 | 0.9929 | 0.9952 | 0.9925 | 0.9957 | 0.9946 | 0.9926 | 0.9942 | 0.9929 | 0.9952 |
|
|
|
|
|
|
#### Sparse Nano BEIR
|
|
|
|
|
|
* Dataset: `NanoBEIR_mean`
|
|
|
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
|
|
```json
|
|
|
{
|
|
|
"dataset_names": [
|
|
|
"msmarco",
|
|
|
"nq",
|
|
|
"nfcorpus",
|
|
|
"quoraretrieval"
|
|
|
]
|
|
|
}
|
|
|
```
|
|
|
|
|
|
| Metric | Value |
|
|
|
|:----------------------|:-----------|
|
|
|
| dot_accuracy@1 | 0.4 |
|
|
|
| dot_accuracy@3 | 0.565 |
|
|
|
| dot_accuracy@5 | 0.625 |
|
|
|
| dot_accuracy@10 | 0.71 |
|
|
|
| dot_precision@1 | 0.4 |
|
|
|
| dot_precision@3 | 0.23 |
|
|
|
| dot_precision@5 | 0.166 |
|
|
|
| dot_precision@10 | 0.1075 |
|
|
|
| dot_recall@1 | 0.306 |
|
|
|
| dot_recall@3 | 0.4471 |
|
|
|
| dot_recall@5 | 0.504 |
|
|
|
| dot_recall@10 | 0.5844 |
|
|
|
| **dot_ndcg@10** | **0.4927** |
|
|
|
| dot_mrr@10 | 0.5017 |
|
|
|
| dot_map@100 | 0.4251 |
|
|
|
| query_active_dims | 83.545 |
|
|
|
| query_sparsity_ratio | 0.9973 |
|
|
|
| corpus_active_dims | 123.2832 |
|
|
|
| corpus_sparsity_ratio | 0.996 |
|
|
|
|
|
|
#### Sparse Nano BEIR
|
|
|
|
|
|
* Dataset: `NanoBEIR_mean`
|
|
|
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
|
|
```json
|
|
|
{
|
|
|
"dataset_names": [
|
|
|
"climatefever",
|
|
|
"dbpedia",
|
|
|
"fever",
|
|
|
"fiqa2018",
|
|
|
"hotpotqa",
|
|
|
"msmarco",
|
|
|
"nfcorpus",
|
|
|
"nq",
|
|
|
"quoraretrieval",
|
|
|
"scidocs",
|
|
|
"arguana",
|
|
|
"scifact",
|
|
|
"touche2020"
|
|
|
]
|
|
|
}
|
|
|
```
|
|
|
|
|
|
| Metric | Value |
|
|
|
|:----------------------|:-----------|
|
|
|
| dot_accuracy@1 | 0.4022 |
|
|
|
| dot_accuracy@3 | 0.5765 |
|
|
|
| dot_accuracy@5 | 0.6598 |
|
|
|
| dot_accuracy@10 | 0.7338 |
|
|
|
| dot_precision@1 | 0.4022 |
|
|
|
| dot_precision@3 | 0.2566 |
|
|
|
| dot_precision@5 | 0.2018 |
|
|
|
| dot_precision@10 | 0.1431 |
|
|
|
| dot_recall@1 | 0.2341 |
|
|
|
| dot_recall@3 | 0.3569 |
|
|
|
| dot_recall@5 | 0.4275 |
|
|
|
| dot_recall@10 | 0.5041 |
|
|
|
| **dot_ndcg@10** | **0.4517** |
|
|
|
| dot_mrr@10 | 0.5088 |
|
|
|
| dot_map@100 | 0.3785 |
|
|
|
| query_active_dims | 105.6179 |
|
|
|
| query_sparsity_ratio | 0.9965 |
|
|
|
| corpus_active_dims | 163.7364 |
|
|
|
| corpus_sparsity_ratio | 0.9946 |
|
|
|
|
|
|
<!--
|
|
|
## Bias, Risks and Limitations
|
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
### Recommendations
|
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
|
-->
|
|
|
|
|
|
## Training Details
|
|
|
|
|
|
### Training Dataset
|
|
|
|
|
|
#### quora-duplicates
|
|
|
|
|
|
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
|
|
* Size: 99,000 training samples
|
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
|
|
* Approximate statistics based on the first 1000 samples:
|
|
|
| | anchor | positive | negative |
|
|
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
|
| type | string | string | string |
|
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 14.1 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.83 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.21 tokens</li><li>max: 75 tokens</li></ul> |
|
|
|
* Samples:
|
|
|
| anchor | positive | negative |
|
|
|
|:----------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
|
| <code>What are the best GMAT coaching institutes in Delhi NCR?</code> | <code>Which are the best GMAT coaching institutes in Delhi/NCR?</code> | <code>What are the best GMAT coaching institutes in Delhi-Noida Area?</code> |
|
|
|
| <code>Is a third world war coming?</code> | <code>Is World War 3 more imminent than expected?</code> | <code>Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?</code> |
|
|
|
| <code>Should I build iOS or Android apps first?</code> | <code>Should people choose Android or iOS first to build their App?</code> | <code>How much more effort is it to build your app on both iOS and Android?</code> |
|
|
|
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
|
|
```json
|
|
|
{
|
|
|
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
|
|
|
"lambda_corpus": 3e-05,
|
|
|
"lambda_query": 5e-05
|
|
|
}
|
|
|
```
|
|
|
|
|
|
### Evaluation Dataset
|
|
|
|
|
|
#### quora-duplicates
|
|
|
|
|
|
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
|
|
* Size: 1,000 evaluation samples
|
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
|
|
* Approximate statistics based on the first 1000 samples:
|
|
|
| | anchor | positive | negative |
|
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
|
| type | string | string | string |
|
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 14.05 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.14 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.56 tokens</li><li>max: 60 tokens</li></ul> |
|
|
|
* Samples:
|
|
|
| anchor | positive | negative |
|
|
|
|:-------------------------------------------------------------------|:------------------------------------------------------------|:-----------------------------------------------------------------|
|
|
|
| <code>What happens if we use petrol in diesel vehicles?</code> | <code>Why can't we use petrol in diesel?</code> | <code>Why are diesel engines noisier than petrol engines?</code> |
|
|
|
| <code>Why is Saltwater taffy candy imported in Switzerland?</code> | <code>Why is Saltwater taffy candy imported in Laos?</code> | <code>Is salt a consumer product?</code> |
|
|
|
| <code>Which is your favourite film in 2016?</code> | <code>What movie is the best movie of 2016?</code> | <code>What will the best movie of 2017 be?</code> |
|
|
|
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
|
|
```json
|
|
|
{
|
|
|
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
|
|
|
"lambda_corpus": 3e-05,
|
|
|
"lambda_query": 5e-05
|
|
|
}
|
|
|
```
|
|
|
|
|
|
### Training Hyperparameters
|
|
|
#### Non-Default Hyperparameters
|
|
|
|
|
|
- `eval_strategy`: steps
|
|
|
- `per_device_train_batch_size`: 12
|
|
|
- `per_device_eval_batch_size`: 12
|
|
|
- `learning_rate`: 2e-05
|
|
|
- `num_train_epochs`: 1
|
|
|
- `bf16`: True
|
|
|
- `load_best_model_at_end`: True
|
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
|
|
#### All Hyperparameters
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
|
|
- `overwrite_output_dir`: False
|
|
|
- `do_predict`: False
|
|
|
- `eval_strategy`: steps
|
|
|
- `prediction_loss_only`: True
|
|
|
- `per_device_train_batch_size`: 12
|
|
|
- `per_device_eval_batch_size`: 12
|
|
|
- `per_gpu_train_batch_size`: None
|
|
|
- `per_gpu_eval_batch_size`: None
|
|
|
- `gradient_accumulation_steps`: 1
|
|
|
- `eval_accumulation_steps`: None
|
|
|
- `torch_empty_cache_steps`: None
|
|
|
- `learning_rate`: 2e-05
|
|
|
- `weight_decay`: 0.0
|
|
|
- `adam_beta1`: 0.9
|
|
|
- `adam_beta2`: 0.999
|
|
|
- `adam_epsilon`: 1e-08
|
|
|
- `max_grad_norm`: 1.0
|
|
|
- `num_train_epochs`: 1
|
|
|
- `max_steps`: -1
|
|
|
- `lr_scheduler_type`: linear
|
|
|
- `lr_scheduler_kwargs`: {}
|
|
|
- `warmup_ratio`: 0.0
|
|
|
- `warmup_steps`: 0
|
|
|
- `log_level`: passive
|
|
|
- `log_level_replica`: warning
|
|
|
- `log_on_each_node`: True
|
|
|
- `logging_nan_inf_filter`: True
|
|
|
- `save_safetensors`: True
|
|
|
- `save_on_each_node`: False
|
|
|
- `save_only_model`: False
|
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
|
- `no_cuda`: False
|
|
|
- `use_cpu`: False
|
|
|
- `use_mps_device`: False
|
|
|
- `seed`: 42
|
|
|
- `data_seed`: None
|
|
|
- `jit_mode_eval`: False
|
|
|
- `use_ipex`: False
|
|
|
- `bf16`: True
|
|
|
- `fp16`: False
|
|
|
- `fp16_opt_level`: O1
|
|
|
- `half_precision_backend`: auto
|
|
|
- `bf16_full_eval`: False
|
|
|
- `fp16_full_eval`: False
|
|
|
- `tf32`: None
|
|
|
- `local_rank`: 0
|
|
|
- `ddp_backend`: None
|
|
|
- `tpu_num_cores`: None
|
|
|
- `tpu_metrics_debug`: False
|
|
|
- `debug`: []
|
|
|
- `dataloader_drop_last`: False
|
|
|
- `dataloader_num_workers`: 0
|
|
|
- `dataloader_prefetch_factor`: None
|
|
|
- `past_index`: -1
|
|
|
- `disable_tqdm`: False
|
|
|
- `remove_unused_columns`: True
|
|
|
- `label_names`: None
|
|
|
- `load_best_model_at_end`: True
|
|
|
- `ignore_data_skip`: False
|
|
|
- `fsdp`: []
|
|
|
- `fsdp_min_num_params`: 0
|
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
|
- `deepspeed`: None
|
|
|
- `label_smoothing_factor`: 0.0
|
|
|
- `optim`: adamw_torch
|
|
|
- `optim_args`: None
|
|
|
- `adafactor`: False
|
|
|
- `group_by_length`: False
|
|
|
- `length_column_name`: length
|
|
|
- `ddp_find_unused_parameters`: None
|
|
|
- `ddp_bucket_cap_mb`: None
|
|
|
- `ddp_broadcast_buffers`: False
|
|
|
- `dataloader_pin_memory`: True
|
|
|
- `dataloader_persistent_workers`: False
|
|
|
- `skip_memory_metrics`: True
|
|
|
- `use_legacy_prediction_loop`: False
|
|
|
- `push_to_hub`: False
|
|
|
- `resume_from_checkpoint`: None
|
|
|
- `hub_model_id`: None
|
|
|
- `hub_strategy`: every_save
|
|
|
- `hub_private_repo`: None
|
|
|
- `hub_always_push`: False
|
|
|
- `gradient_checkpointing`: False
|
|
|
- `gradient_checkpointing_kwargs`: None
|
|
|
- `include_inputs_for_metrics`: False
|
|
|
- `include_for_metrics`: []
|
|
|
- `eval_do_concat_batches`: True
|
|
|
- `fp16_backend`: auto
|
|
|
- `push_to_hub_model_id`: None
|
|
|
- `push_to_hub_organization`: None
|
|
|
- `mp_parameters`:
|
|
|
- `auto_find_batch_size`: False
|
|
|
- `full_determinism`: False
|
|
|
- `torchdynamo`: None
|
|
|
- `ray_scope`: last
|
|
|
- `ddp_timeout`: 1800
|
|
|
- `torch_compile`: False
|
|
|
- `torch_compile_backend`: None
|
|
|
- `torch_compile_mode`: None
|
|
|
- `include_tokens_per_second`: False
|
|
|
- `include_num_input_tokens_seen`: False
|
|
|
- `neftune_noise_alpha`: None
|
|
|
- `optim_target_modules`: None
|
|
|
- `batch_eval_metrics`: False
|
|
|
- `eval_on_start`: False
|
|
|
- `use_liger_kernel`: False
|
|
|
- `eval_use_gather_object`: False
|
|
|
- `average_tokens_across_devices`: False
|
|
|
- `prompts`: None
|
|
|
- `batch_sampler`: no_duplicates
|
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
- `router_mapping`: {}
|
|
|
- `learning_rate_mapping`: {}
|
|
|
|
|
|
</details>
|
|
|
|
|
|
### Training Logs
|
|
|
| Epoch | Step | Training Loss | Validation Loss | quora_duplicates_dev_max_ap | NanoMSMARCO_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
|
|
|
|:-------:|:--------:|:-------------:|:---------------:|:---------------------------:|:-----------------------:|:------------------:|:------------------------:|:------------------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|
|
|
|
| 0.0242 | 200 | 6.2275 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.0485 | 400 | 0.4129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.0727 | 600 | 0.3238 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.0970 | 800 | 0.2795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.1212 | 1000 | 0.255 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.1455 | 1200 | 0.2367 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.1697 | 1400 | 0.25 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.1939 | 1600 | 0.2742 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.2 | 1650 | - | 0.1914 | 0.6442 | 0.3107 | 0.2820 | 0.1991 | 0.8711 | 0.4157 | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.2182 | 1800 | 0.2102 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.2424 | 2000 | 0.1797 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.2667 | 2200 | 0.2021 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.2909 | 2400 | 0.1734 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.3152 | 2600 | 0.1849 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.3394 | 2800 | 0.1871 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.3636 | 3000 | 0.1685 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.3879 | 3200 | 0.1512 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.4 | 3300 | - | 0.1139 | 0.6637 | 0.4200 | 0.3431 | 0.1864 | 0.9222 | 0.4679 | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.4121 | 3400 | 0.1165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.4364 | 3600 | 0.1518 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.4606 | 3800 | 0.1328 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.4848 | 4000 | 0.1098 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.5091 | 4200 | 0.1389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.5333 | 4400 | 0.1224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.5576 | 4600 | 0.09 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.5818 | 4800 | 0.1162 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.6 | 4950 | - | 0.0784 | 0.6666 | 0.4404 | 0.3688 | 0.2239 | 0.9478 | 0.4952 | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.6061 | 5000 | 0.1054 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.6303 | 5200 | 0.0949 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.6545 | 5400 | 0.1315 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.6788 | 5600 | 0.1246 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.7030 | 5800 | 0.1047 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.7273 | 6000 | 0.0861 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.7515 | 6200 | 0.103 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.7758 | 6400 | 0.1062 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| **0.8** | **6600** | **0.1275** | **0.0783** | **0.6856** | **0.4666** | **0.3928** | **0.2175** | **0.9434** | **0.5051** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** |
|
|
|
| 0.8242 | 6800 | 0.1131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.8485 | 7000 | 0.0651 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.8727 | 7200 | 0.0657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.8970 | 7400 | 0.1065 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.9212 | 7600 | 0.0691 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.9455 | 7800 | 0.1136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.9697 | 8000 | 0.0834 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 0.9939 | 8200 | 0.0867 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
|
|
| 1.0 | 8250 | - | 0.0720 | 0.6876 | 0.4688 | 0.3711 | 0.1901 | 0.9408 | 0.4927 | - | - | - | - | - | - | - | - | - |
|
|
|
| -1 | -1 | - | - | - | 0.4666 | 0.3928 | 0.2175 | 0.9434 | 0.4517 | 0.1928 | 0.5024 | 0.7369 | 0.2333 | 0.6849 | 0.2850 | 0.2651 | 0.5848 | 0.3661 |
|
|
|
|
|
|
* The bold row denotes the saved checkpoint.
|
|
|
|
|
|
### Environmental Impact
|
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
|
- **Energy Consumed**: 0.075 kWh
|
|
|
- **Carbon Emitted**: 0.029 kg of CO2
|
|
|
- **Hours Used**: 0.306 hours
|
|
|
|
|
|
### Training Hardware
|
|
|
- **On Cloud**: No
|
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
|
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
|
|
### Framework Versions
|
|
|
- Python: 3.11.6
|
|
|
- Sentence Transformers: 4.2.0.dev0
|
|
|
- Transformers: 4.52.4
|
|
|
- PyTorch: 2.6.0+cu124
|
|
|
- Accelerate: 1.5.1
|
|
|
- Datasets: 2.21.0
|
|
|
- Tokenizers: 0.21.1
|
|
|
|
|
|
## Citation
|
|
|
|
|
|
### BibTeX
|
|
|
|
|
|
#### Sentence Transformers
|
|
|
```bibtex
|
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
|
month = "11",
|
|
|
year = "2019",
|
|
|
publisher = "Association for Computational Linguistics",
|
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
|
}
|
|
|
```
|
|
|
|
|
|
#### SpladeLoss
|
|
|
```bibtex
|
|
|
@misc{formal2022distillationhardnegativesampling,
|
|
|
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
|
|
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
|
|
year={2022},
|
|
|
eprint={2205.04733},
|
|
|
archivePrefix={arXiv},
|
|
|
primaryClass={cs.IR},
|
|
|
url={https://arxiv.org/abs/2205.04733},
|
|
|
}
|
|
|
```
|
|
|
|
|
|
#### SparseMultipleNegativesRankingLoss
|
|
|
```bibtex
|
|
|
@misc{henderson2017efficient,
|
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
|
|
year={2017},
|
|
|
eprint={1705.00652},
|
|
|
archivePrefix={arXiv},
|
|
|
primaryClass={cs.CL}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
#### FlopsLoss
|
|
|
```bibtex
|
|
|
@article{paria2020minimizing,
|
|
|
title={Minimizing flops to learn efficient sparse representations},
|
|
|
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
|
|
journal={arXiv preprint arXiv:2004.05665},
|
|
|
year={2020}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
<!--
|
|
|
## Glossary
|
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
## Model Card Authors
|
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
|
-->
|
|
|
|
|
|
<!--
|
|
|
## Model Card Contact
|
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
|
--> |