Bart¶
DISCLAIMER: If you see something strange, file a Github Issue and assign @sshleifer
Overview¶
The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract,
Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).
The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.
BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE.
The Authors’ code can be found here
Implementation Notes¶
Bart doesn’t use
token_type_idsfor sequence classification. Use BartTokenizer.encode to get the proper splitting.The forward pass of
BartModelwill create decoder inputs (using the helper functiontransformers.modeling_bart._prepare_bart_decoder_inputs) if they are not passed. This is different than some other modeling APIs.Model predictions are intended to be identical to the original implementation. This only works, however, if the string you pass to
fairseq.encodestarts with a space.BartForConditionalGeneration.generateshould be used for conditional generation tasks like summarization, see the example in that docstringsModels that load the
"facebook/bart-large-cnn"weights will not have amask_token_id, or be able to perform mask filling tasks.for training/forward passes that don’t involve beam search, pass
use_cache=False
BartForConditionalGeneration¶
-
class
transformers.BartForConditionalGeneration(config: transformers.configuration_bart.BartConfig)[source]¶ The BART Model with a language modeling head. Can be used for summarization.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior.
- Parameters
config (
BartConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, past_key_values=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **unused)[source]¶ The
BartForConditionalGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) – Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them. Padding will be ignored by default should you provide it. Indices can be obtained usingtransformers.BartTokenizer.encode(text).attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) – Mask to avoid performing attention on padding token indices in input_ids. Mask values selected in[0, 1]:1for tokens that are NOT MASKED,0for MASKED tokens.encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) – Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default. If you want to change padding behavior, you should read_prepare_decoder_inputs()and modify. See diagram 1 in the paper for more info on the default strategypast_key_values (
tuple(tuple(torch.FloatTensor))of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) – Contains pre-computed key and value hidden-states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) – If use_cache is True,past_key_valuesare returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – If set toTrue, the attentions tensors of all attention layers are returned. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – If set toTrue, the hidden states of all layers are returned. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) –If set to
True, the model will return aModelOutputinstead of a plain tuple.- labels (
torch.LongTensorof shape(batch_size, sequence_length), optional): Labels for computing the masked language modeling loss. Indices should either be in
[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].
- labels (
- Returns
A
Seq2SeqLMOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (BartConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) – Languaged modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Conditional generation example:
>>> # Mask filling only works for bart-large >>> from transformers import BartTokenizer, BartForConditionalGeneration >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids'] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = logits[0, masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5) >>> tokenizer.decode(predictions).split() >>> # ['good', 'great', 'all', 'really', 'very']
- Return type
Seq2SeqLMOutputortuple(torch.FloatTensor)
Summarization example:
>>> from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig >>> # see ``examples/summarization/bart/run_eval.py`` for a longer example >>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt') >>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
BartConfig¶
-
class
transformers.BartConfig(activation_dropout=0.0, extra_pos_embeddings=2, activation_function='gelu', vocab_size=50265, d_model=1024, encoder_ffn_dim=4096, encoder_layers=12, encoder_attention_heads=16, decoder_ffn_dim=4096, decoder_layers=12, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, attention_dropout=0.0, dropout=0.1, max_position_embeddings=1024, init_std=0.02, classifier_dropout=0.0, num_labels=3, is_encoder_decoder=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, normalize_before=False, add_final_layer_norm=False, scale_embedding=False, normalize_embedding=True, static_position_embeddings=False, add_bias_logits=False, force_bos_token_to_be_generated=False, **common_kwargs)[source]¶ The
BartConfigforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
vocab_size (
int, optional, defaults to 50265) – defines the different tokens that can be represented by inputs_ids passed to the forward method.d_model (
int, optional, defaults to 1024) – Dimensionality of the layers and the pooler layer.encoder_layers (
int, optional, defaults to 12) – Number of encoder layers, 16 for pegasus, 6 for bart-base and mariandecoder_layers (
int, optional, defaults to 12) – Number of decoder layers, 16 for pegasus, 6 for bart-base and marianencoder_attention_heads (
int, optional, defaults to 16) – Number of attention heads for each attention layer in the Transformer encoder.decoder_attention_heads (
int, optional, defaults to 16) – Number of attention heads for each attention layer in the Transformer decoder.decoder_ffn_dim (
int, optional, defaults to 4096) – Dimensionality of the “intermediate” (i.e., feed-forward) layer in decoder.encoder_ffn_dim (
int, optional, defaults to 4096) – Dimensionality of the “intermediate” (i.e., feed-forward) layer in decoder.activation_function (
strorfunction, optional, defaults to “gelu”) – The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”, “swish” and “gelu_new” are supported.dropout (
float, optional, defaults to 0.1) – The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.attention_dropout (
float, optional, defaults to 0.0) – The dropout ratio for the attention probabilities.activation_dropout (
float, optional, defaults to 0.0) – The dropout ratio for activations inside the fully connected layer.classifier_dropout (
float, optional, defaults to 0.0) – The dropout ratio for classifier.max_position_embeddings (
int, optional, defaults to 1024) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).init_std (
float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.add_bias_logits (
bool, optional, defaults toFalse) – True for marian only.normalize_before (
bool, optional, defaults toFalse) – Call layernorm before attention ops. True for pegasus, mbart. False for bart. FIXME: marian?normalize_embedding (
bool, optional, defaults toTrue) – Call layernorm after embeddings. Only True for Bart.static_position_embeddings (
bool, optional, defaults toFalse) – Don’t learn positional embeddings, use sinusoidal. True for marian, pegasus.add_final_layer_norm (
bool, optional, defaults toFalse) – Why not add another layernorm?scale_embedding (
bool, optional, defaults toFalse) – Scale embeddings by diving by sqrt(d_model).eos_token_id (
int, optional, defaults to 2) – End of stream token id.pad_token_id (
int, optional, defaults to 1) – Padding token id.bos_token_id (
int, optional, defaults to 0) – Beginning of stream token id.encoder_layerdrop – (
float, optional, defaults to 0.0): Google “layerdrop arxiv”, as its not explainable in one line.decoder_layerdrop – (
float, optional, defaults to 0.0): Google “layerdrop arxiv”, as its not explainable in one line.extra_pos_embeddings – (
int, optional, defaults to 2): How many extra learned positional embeddings to use. Should be pad_token_id+1 for bart.num_labels – (
int, optional, defaults to 3): for SequenceClassificationis_encoder_decoder (
bool, optional, defaults toTrue) – Whether this is an encoder/decoder modelforce_bos_token_to_be_generated (
bool, optional, defaults toFalse) – Whether or not to force BOS token to be generated at step 1 (afterdecoder_start_token_id), only true for bart-large-cnn.
Configuration class for Bart. Parameters are renamed from the fairseq implementation
BartTokenizer¶
-
class
transformers.BartTokenizer(vocab_file, merges_file, errors='replace', bos_token='<s>', eos_token='</s>', sep_token='</s>', cls_token='<s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>', add_prefix_space=False, **kwargs)[source]¶ -
prepare_seq2seq_batch(src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = 'longest', return_tensors: str = 'None', truncation=True, **kwargs) → transformers.tokenization_utils_base.BatchEncoding[source]¶ Prepare a batch that can be passed directly to an instance of
BartModel.- Parameters
src_texts – (
List[str]): List of documents to summarize or source language texts.tgt_texts – (
List[str], optional): List of summaries or target language texts.max_length (
int, optional) – Controls the maximum length for encoder inputs (documents to summarize or source language texts). If left unset or set toNone, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.max_target_length (
int, optional) – Controls the maximum length of decoder inputs (target language texts or summaries). If left unset or set toNone, this will use the max_length value.padding (
bool,strorPaddingStrategy, optional, defaults toFalse) –Activates and controls padding. Accepts the following values:
Trueor'longest': Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).'max_length': Pad to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided.Falseor'do_not_pad'(default): No padding (i.e., can output a batch with sequences of different lengths).
return_tensors (
strorTensorType, optional, defaults to “pt”) –If set, will return tensors instead of list of python integers. Acceptable values are:
'tf': Return TensorFlowtf.constantobjects.'pt': Return PyTorchtorch.Tensorobjects.'np': Return Numpynp.ndarrayobjects.
truncation (
bool,strorTruncationStrategy, optional, defaults toTrue) –Activates and controls truncation. Accepts the following values:
Trueor'longest_first': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.'only_first': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.Falseor'do_not_truncate'(default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).
**kwargs – Additional keyword arguments passed along to
self.__call__.
- Returns
A
BatchEncodingwith the following fields:input_ids – List of token ids to be fed to the encoder.
attention_mask – List of indices specifying which tokens should be attended to by the model.
labels – List of token ids for tgt_texts
The full set of keys
[input_ids, attention_mask, decoder_input_ids, decoder_attention_mask], will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys.- Return type
-
BartModel¶
-
class
transformers.BartModel(config: transformers.configuration_bart.BartConfig)[source]¶ The bare BART Model outputting raw hidden-states without any specific head on top.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior.
- Parameters
config (
BartConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids, attention_mask=None, decoder_input_ids=None, encoder_outputs: Optional[Tuple] = None, decoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]¶ The
BartModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) – Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them. Padding will be ignored by default should you provide it. Indices can be obtained usingtransformers.BartTokenizer.encode(text).attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) – Mask to avoid performing attention on padding token indices in input_ids. Mask values selected in[0, 1]:1for tokens that are NOT MASKED,0for MASKED tokens.encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) – Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default. If you want to change padding behavior, you should read_prepare_decoder_inputs()and modify. See diagram 1 in the paper for more info on the default strategypast_key_values (
tuple(tuple(torch.FloatTensor))of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) – Contains pre-computed key and value hidden-states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) – If use_cache is True,past_key_valuesare returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – If set toTrue, the attentions tensors of all attention layers are returned. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – If set toTrue, the hidden states of all layers are returned. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – If set toTrue, the model will return aModelOutputinstead of a plain tuple.
- Returns
A
BaseModelOutputWithPast(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (BartConfig) and inputs.last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.If past_key_values is used only the last hidden-state of the sequences of shape
(batch_size, 1, hidden_size)is output.past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
BaseModelOutputWithPastortuple(torch.FloatTensor)
Example:
>>> from transformers import BartTokenizer, BartModel >>> import torch >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> model = BartModel.from_pretrained('facebook/bart-large', return_dict=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
-
transformers.modeling_bart._prepare_bart_decoder_inputs(config, input_ids, decoder_input_ids=None, decoder_padding_mask=None, causal_mask_dtype=torch.float32)[source]¶ Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if none are provided. This mimics the default behavior in fairseq. To override it pass in masks. Note: this is not called during generation
BartForSequenceClassification¶
-
class
transformers.BartForSequenceClassification(config: transformers.configuration_bart.BartConfig, **kwargs)[source]¶ Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior.
- Parameters
config (
BartConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
BartForSequenceClassificationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) – Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them. Padding will be ignored by default should you provide it. Indices can be obtained usingtransformers.BartTokenizer.encode(text).attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) – Mask to avoid performing attention on padding token indices in input_ids. Mask values selected in[0, 1]:1for tokens that are NOT MASKED,0for MASKED tokens.encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) – Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default. If you want to change padding behavior, you should read_prepare_decoder_inputs()and modify. See diagram 1 in the paper for more info on the default strategypast_key_values (
tuple(tuple(torch.FloatTensor))of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) – Contains pre-computed key and value hidden-states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) – If use_cache is True,past_key_valuesare returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – If set toTrue, the attentions tensors of all attention layers are returned. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – If set toTrue, the hidden states of all layers are returned. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – If set toTrue, the model will return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size,), optional) – Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]. Ifconfig.num_labels > 1a classification loss is computed (Cross-Entropy).
- Returns
A
Seq2SeqSequenceClassifierOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (BartConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelis provided) – Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensorof shape(batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
Seq2SeqSequenceClassifierOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import BartTokenizer, BartForSequenceClassification >>> import torch >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> model = BartForSequenceClassification.from_pretrained('facebook/bart-large', return_dict=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
BartForQuestionAnswering¶
-
class
transformers.BartForQuestionAnswering(config)[source]¶ BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits and span end logits).
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior.
- Parameters
config (
BartConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, start_positions=None, end_positions=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
BartForQuestionAnsweringforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) – Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them. Padding will be ignored by default should you provide it. Indices can be obtained usingtransformers.BartTokenizer.encode(text).attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) – Mask to avoid performing attention on padding token indices in input_ids. Mask values selected in[0, 1]:1for tokens that are NOT MASKED,0for MASKED tokens.encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) – Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default. If you want to change padding behavior, you should read_prepare_decoder_inputs()and modify. See diagram 1 in the paper for more info on the default strategypast_key_values (
tuple(tuple(torch.FloatTensor))of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) – Contains pre-computed key and value hidden-states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) – If use_cache is True,past_key_valuesare returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – If set toTrue, the attentions tensors of all attention layers are returned. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – If set toTrue, the hidden states of all layers are returned. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – If set toTrue, the model will return aModelOutputinstead of a plain tuple.start_positions (
torch.LongTensorof shape(batch_size,), optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.end_positions (
torch.LongTensorof shape(batch_size,), optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
Seq2SeqQuestionAnsweringModelOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (BartConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
torch.FloatTensorof shape(batch_size, sequence_length,)) – Span-start scores (before SoftMax).end_logits (
torch.FloatTensorof shape(batch_size, sequence_length,)) – Span-end scores (before SoftMax).past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
Seq2SeqQuestionAnsweringModelOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import BartTokenizer, BartForQuestionAnswering >>> import torch >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> model = BartForQuestionAnswering.from_pretrained('facebook/bart-large', return_dict=True) >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors='pt') >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits