Encoder Decoder Models¶
The EncoderDecoderModel can be used to initialize a sequence-to-sequence model with any pre-trained autoencoding model as the encoder and any pre-trained autoregressive model as the decoder.
The effectiveness of initializing sequence-to-sequence models with pre-trained checkpoints for sequence generation tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
After such an EncoderDecoderModel has been trained / fine-tuned, it can be saved / loaded just like any other models (see Examples for more information).
An application of this architecture could be to leverage two pre-trained transformers.BertModel models as the encoder and decoder for a summarization model as was shown in: Text Summarization with Pretrained Encoders by Yang Liu and Mirella Lapata.
EncoderDecoderConfig¶
-
class
transformers.EncoderDecoderConfig(**kwargs)[source]¶ EncoderDecoderConfigis the configuration class to store the configuration of a EncoderDecoderModel.It is used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder configs. Configuration objects inherit from
PretrainedConfigand can be used to control the model outputs. See the documentation forPretrainedConfigfor more information.- Parameters
kwargs (optional) –
- Remaining dictionary of keyword arguments. Notably:
- encoder (
PretrainedConfig, optional, defaults to None): An instance of a configuration object that defines the encoder config.
- decoder (
PretrainedConfig, optional, defaults to None): An instance of a configuration object that defines the decoder config.
- encoder (
Example:
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel >>> # Initializing a BERT bert-base-uncased style configuration >>> config_encoder = BertConfig() >>> config_decoder = BertConfig() >>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> # Initializing a Bert2Bert model from the bert-base-uncased style configurations >>> model = EncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_encoder = model.config.encoder >>> config_decoder = model.config.decoder >>> # set decoder config to causal lm >>> config_decoder.is_decoder = True >>> config_decoder.add_cross_attention = True >>> # Saving the model, including its configuration >>> model.save_pretrained('my-model') >>> # loading model and config from pretrained folder >>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained('my-model') >>> model = EncoderDecoderModel.from_pretrained('my-model', config=encoder_decoder_config)
-
classmethod
from_encoder_decoder_configs(encoder_config: transformers.configuration_utils.PretrainedConfig, decoder_config: transformers.configuration_utils.PretrainedConfig, **kwargs) → transformers.configuration_utils.PretrainedConfig[source]¶ Instantiate a
EncoderDecoderConfig(or a derived class) from a pre-trained encoder model configuration and decoder model configuration.- Returns
An instance of a configuration object
- Return type
EncoderDecoderModel¶
-
class
transformers.EncoderDecoderModel(config: Optional[transformers.configuration_utils.PretrainedConfig] = None, encoder: Optional[transformers.modeling_utils.PreTrainedModel] = None, decoder: Optional[transformers.modeling_utils.PreTrainedModel] = None)[source]¶ This class can be used to inialize a sequence-to-sequnece model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
from_pretrained()function and the decoder is loaded viafrom_pretrained()function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, i.e. summarization.The effectiveness of initializing sequence-to-sequence models with pre-trained checkpoints for sequence generation tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained / fine-tuned, it can be saved / loaded just like any other models (see Examples for more information).
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
T5Config) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
EncoderDecoderis a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the AutoModel.from_pretrained(pretrained_model_name_or_path) class method for the encoder and AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path) class method for the decoder.-
config_class¶ alias of
transformers.configuration_encoder_decoder.EncoderDecoderConfig
-
forward(input_ids=None, inputs_embeds=None, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_inputs_embeds=None, labels=None, return_dict=None, **kwargs)[source]¶ The
EncoderDecoderModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) – Indices of input sequence tokens in the vocabulary for the encoder. Indices can be obtained usingPretrainedTokenizer. Seeencode()andconvert_tokens_to_ids()for details.inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) – Mask to avoid performing attention on padding token indices for the encoder. Mask values selected in[0, 1]:1for tokens that are NOT MASKED,0for MASKED tokens.encoder_outputs (
tuple(torch.FloatTensor), optional) – This tuple must consist of (last_hidden_state, optional:hidden_states, optional:attentions) last_hidden_state (torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Provide for sequence to sequence training to the decoder. Indices can be obtained usingtransformers.PretrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.convert_tokens_to_ids()for details.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) – Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.decoder_inputs_embeds (
torch.FloatTensorof shape(batch_size, target_sequence_length, hidden_size), optional) – Optionally, instead of passingdecoder_input_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss for the decoder. Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]return_dict (
bool, optional) – If set toTrue, the model will return aSeq2SeqLMOutputinstead of a plain tuple.kwargs – (optional) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as
**encoder_kwargsfor the encoder forward function. - With a decoder_ prefix which will be input as**decoder_kwargsfor the decoder forward function.
- Returns
A
Seq2SeqLMOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (EncoderDecoderConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) – Languaged modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import EncoderDecoderModel, BertTokenizer >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased') # initialize Bert2Bert from pre-trained checkpoints >>> # forward >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) >>> # training >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids, return_dict=True) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2bert") >>> model = EncoderDecoderModel.from_pretrained("bert2bert") >>> # generation >>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.pad_token_id)
- Return type
Seq2SeqLMOutputortuple(torch.FloatTensor)
-
classmethod
from_encoder_decoder_pretrained(encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs) → transformers.modeling_utils.PreTrainedModel[source]¶ Instantiates an encoder and a decoder from one or two base classes of the library from pre-trained model checkpoints.
The model is set in evaluation mode by default using model.eval() (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with model.train().
- Params:
- encoder_pretrained_model_name_or_path (:obj: str, optional, defaults to None):
information necessary to initiate the encoder. Either:
a string with the shortcut name of a pre-trained model to load from cache or download, e.g.:
bert-base-uncased.a string with the identifier name of a pre-trained model that was user-uploaded to our S3, e.g.:
dbmdz/bert-base-german-cased.a path to a directory containing model weights saved using
save_pretrained(), e.g.:./my_model_directory/encoder.a path or url to a tensorflow index checkpoint file (e.g. ./tf_model/model.ckpt.index). In this case,
from_tfshould be set to True and a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- decoder_pretrained_model_name_or_path (:obj: str, optional, defaults to None):
information necessary to initiate the decoder. Either:
a string with the shortcut name of a pre-trained model to load from cache or download, e.g.:
bert-base-uncased.a string with the identifier name of a pre-trained model that was user-uploaded to our S3, e.g.:
dbmdz/bert-base-german-cased.a path to a directory containing model weights saved using
save_pretrained(), e.g.:./my_model_directory/decoder.a path or url to a tensorflow index checkpoint file (e.g. ./tf_model/model.ckpt.index). In this case,
from_tfshould be set to True and a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args: (optional) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model’s
__init__method- kwargs: (optional) Remaining dictionary of keyword arguments.
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g.
output_attentions=True). - To update the encoder configuration, use the prefix encoder_ for each configuration parameter - To update the decoder configuration, use the prefix decoder_ for each configuration parameter - To update the parent model configuration, do not use a prefix for each configuration parameter Behave differently depending on whether aconfigis provided or automatically loaded.
Examples:
>>> from transformers import EncoderDecoderModel >>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased') >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2bert") >>> # load fine-tuned model >>> model = EncoderDecoderModel.from_pretrained("./bert2bert")
-
get_input_embeddings()[source]¶ Returns the model’s input embeddings.
- Returns
A torch module mapping vocabulary to hidden states.
- Return type
nn.Module
-
get_output_embeddings()[source]¶ Returns the model’s output embeddings.
- Returns
A torch module mapping hidden states to vocabulary.
- Return type
nn.Module