See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: princeton-nlp/gemma-2-9b-it-SimPO
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3b1d283ca2efceff_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3b1d283ca2efceff_train_data.json
type:
field_input: rejected_gpt
field_instruction: chosen_submission_id
field_output: chosen_gpt
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: tuantmdev/99752499-e94d-4d82-9630-b0b25387572a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-05
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/3b1d283ca2efceff_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_strategy: best
saves_per_epoch: 5
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7649a979-1ca4-4339-b90b-8254f1cf7276
wandb_project: Gradients-On-Demand
wandb_run: unknown
wandb_runid: 7649a979-1ca4-4339-b90b-8254f1cf7276
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
99752499-e94d-4d82-9630-b0b25387572a
This model is a fine-tuned version of princeton-nlp/gemma-2-9b-it-SimPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8340
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0002 | 1 | 4.4494 |
| 4.3596 | 0.0019 | 10 | 3.8138 |
| 2.886 | 0.0038 | 20 | 2.2565 |
| 2.0607 | 0.0057 | 30 | 1.9403 |
| 1.929 | 0.0076 | 40 | 1.8487 |
| 1.8321 | 0.0095 | 50 | 1.8340 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tuantmdev/99752499-e94d-4d82-9630-b0b25387572a
Base model
google/gemma-2-9b
Finetuned
google/gemma-2-9b-it
Finetuned
princeton-nlp/gemma-2-9b-it-SimPO