NanoMaestro / model /music_transformer.py
utkucoban's picture
NanoMaestro Full model weights released
47dfee0 verified
import torch
import torch.nn as nn
from torch.nn.modules.normalization import LayerNorm
import random
from utilities.constants import *
from utilities.device import get_device
from .positional_encoding import PositionalEncoding
from .rpr import TransformerEncoderRPR, TransformerEncoderLayerRPR
# MusicTransformer
class MusicTransformer(nn.Module):
def __init__(self, n_layers=6, num_heads=8, d_model=512, dim_feedforward=1024,
dropout=0.1, max_sequence=2048, rpr=False):
super(MusicTransformer, self).__init__()
self.dummy = DummyDecoder()
self.nlayers = n_layers
self.nhead = num_heads
self.d_model = d_model
self.d_ff = dim_feedforward
self.dropout = dropout
self.max_seq = max_sequence
self.rpr = rpr
# Input embedding
self.embedding = nn.Embedding(VOCAB_SIZE, self.d_model)
# Positional encoding
self.positional_encoding = PositionalEncoding(self.d_model, self.dropout, self.max_seq)
# Base transformer
if(not self.rpr):
self.transformer = nn.Transformer(
d_model=self.d_model, nhead=self.nhead, num_encoder_layers=self.nlayers,
num_decoder_layers=0, dropout=self.dropout,
dim_feedforward=self.d_ff, custom_decoder=self.dummy
)
else:
encoder_norm = LayerNorm(self.d_model)
encoder_layer = TransformerEncoderLayerRPR(self.d_model, self.nhead, self.d_ff, self.dropout, er_len=self.max_seq)
encoder = TransformerEncoderRPR(encoder_layer, self.nlayers, encoder_norm)
self.transformer = nn.Transformer(
d_model=self.d_model, nhead=self.nhead, num_encoder_layers=self.nlayers,
num_decoder_layers=0, dropout=self.dropout,
dim_feedforward=self.d_ff, custom_decoder=self.dummy, custom_encoder=encoder
)
# Final output is a softmaxed linear layer
self.Wout = nn.Linear(self.d_model, VOCAB_SIZE)
self.softmax = nn.Softmax(dim=-1)
# forward
def forward(self, x, mask=True):
# --- FIX: USE DEVICE OF INPUT TENSOR x ---
if(mask is True):
# Generate mask on the same device as input x
mask = self.transformer.generate_square_subsequent_mask(x.shape[1]).to(x.device)
else:
mask = None
# -----------------------------------------
x = self.embedding(x)
# Input shape is (max_seq, batch_size, d_model)
x = x.permute(1,0,2)
x = self.positional_encoding(x)
# Since there are no true decoder layers, the tgt is unused
x_out = self.transformer(src=x, tgt=x, src_mask=mask)
# Back to (batch_size, max_seq, d_model)
x_out = x_out.permute(1,0,2)
y = self.Wout(x_out)
return y
# generate
def generate(self, primer=None, target_seq_length=1024, beam=0, beam_chance=1.0):
assert (not self.training), "Cannot generate while in training mode"
print("Generating sequence of max length:", target_seq_length)
batch_size = primer.shape[0]
gen_seq = torch.full((batch_size, target_seq_length), TOKEN_PAD, dtype=TORCH_LABEL_TYPE, device=get_device())
num_primer = primer.shape[1]
gen_seq[..., :num_primer] = primer.type(TORCH_LABEL_TYPE).to(get_device())
cur_i = num_primer
while(cur_i < target_seq_length):
y = self.softmax(self.forward(gen_seq[..., :cur_i]))[..., :TOKEN_END]
token_probs = y[:, cur_i-1, :]
if(beam == 0):
beam_ran = 2.0
else:
beam_ran = random.uniform(0,1)
if(beam_ran <= beam_chance):
token_probs = token_probs.flatten()
top_res, top_i = torch.topk(token_probs, beam)
beam_rows = top_i // VOCAB_SIZE
beam_cols = top_i % VOCAB_SIZE
gen_seq = gen_seq[beam_rows, :]
gen_seq[..., cur_i] = beam_cols
else:
distrib = torch.distributions.categorical.Categorical(probs=token_probs)
next_token = distrib.sample()
gen_seq[:, cur_i] = next_token
if(next_token == TOKEN_END):
print("Model called end of sequence at:", cur_i, "/", target_seq_length)
break
cur_i += 1
if(cur_i % 50 == 0):
print(cur_i, "/", target_seq_length)
return gen_seq[:, :cur_i]
# Used as a dummy to nn.Transformer
class DummyDecoder(nn.Module):
def __init__(self):
super(DummyDecoder, self).__init__()
def forward(self, tgt, memory, tgt_mask, memory_mask,tgt_key_padding_mask,memory_key_padding_mask, **kwargs):
return memory