NanoMaestro / utilities /argument_funcs.py
utkucoban's picture
NanoMaestro Full model weights released
47dfee0 verified
import argparse
from .constants import SEPERATOR
# parse_train_args
def parse_train_args():
"""
----------
Author: Damon Gwinn
----------
Argparse arguments for training a model
----------
"""
parser = argparse.ArgumentParser()
parser.add_argument("-input_dir", type=str, default="./dataset/e_piano", help="Folder of preprocessed and pickled midi files")
parser.add_argument("-output_dir", type=str, default="./saved_models", help="Folder to save model weights. Saves one every epoch")
parser.add_argument("-weight_modulus", type=int, default=1, help="How often to save epoch weights (ex: value of 10 means save every 10 epochs)")
parser.add_argument("-print_modulus", type=int, default=1, help="How often to print train results for a batch (batch loss, learn rate, etc.)")
parser.add_argument("-n_workers", type=int, default=1, help="Number of threads for the dataloader")
parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")
parser.add_argument("--no_tensorboard", action="store_true", help="Turns off tensorboard result reporting")
parser.add_argument("-continue_weights", type=str, default=None, help="Model weights to continue training based on")
parser.add_argument("-continue_epoch", type=int, default=None, help="Epoch the continue_weights model was at")
parser.add_argument("-lr", type=float, default=None, help="Constant learn rate. Leave as None for a custom scheduler.")
parser.add_argument("-ce_smoothing", type=float, default=None, help="Smoothing parameter for smoothed cross entropy loss (defaults to no smoothing)")
parser.add_argument("-batch_size", type=int, default=2, help="Batch size to use")
parser.add_argument("-epochs", type=int, default=100, help="Number of epochs to use")
parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider")
parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")
parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")
parser.add_argument("-dropout", type=float, default=0.1, help="Dropout rate")
return parser.parse_args()
# print_train_args
def print_train_args(args):
"""
----------
Author: Damon Gwinn
----------
Prints training arguments
----------
"""
print(SEPERATOR)
print("input_dir:", args.input_dir)
print("output_dir:", args.output_dir)
print("weight_modulus:", args.weight_modulus)
print("print_modulus:", args.print_modulus)
print("")
print("n_workers:", args.n_workers)
print("force_cpu:", args.force_cpu)
print("tensorboard:", not args.no_tensorboard)
print("")
print("continue_weights:", args.continue_weights)
print("continue_epoch:", args.continue_epoch)
print("")
print("lr:", args.lr)
print("ce_smoothing:", args.ce_smoothing)
print("batch_size:", args.batch_size)
print("epochs:", args.epochs)
print("")
print("rpr:", args.rpr)
print("max_sequence:", args.max_sequence)
print("n_layers:", args.n_layers)
print("num_heads:", args.num_heads)
print("d_model:", args.d_model)
print("")
print("dim_feedforward:", args.dim_feedforward)
print("dropout:", args.dropout)
print(SEPERATOR)
print("")
# parse_eval_args
def parse_eval_args():
"""
----------
Author: Damon Gwinn
----------
Argparse arguments for evaluating a model
----------
"""
parser = argparse.ArgumentParser()
parser.add_argument("-dataset_dir", type=str, default="./dataset/e_piano", help="Folder of preprocessed and pickled midi files")
parser.add_argument("-model_weights", type=str, default="./saved_models/model.pickle", help="Pickled model weights file saved with torch.save and model.state_dict()")
parser.add_argument("-n_workers", type=int, default=1, help="Number of threads for the dataloader")
parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")
parser.add_argument("-batch_size", type=int, default=2, help="Batch size to use")
parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider in the model")
parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")
parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")
return parser.parse_args()
# print_eval_args
def print_eval_args(args):
"""
----------
Author: Damon Gwinn
----------
Prints evaluation arguments
----------
"""
print(SEPERATOR)
print("dataset_dir:", args.dataset_dir)
print("model_weights:", args.model_weights)
print("n_workers:", args.n_workers)
print("force_cpu:", args.force_cpu)
print("")
print("batch_size:", args.batch_size)
print("")
print("rpr:", args.rpr)
print("max_sequence:", args.max_sequence)
print("n_layers:", args.n_layers)
print("num_heads:", args.num_heads)
print("d_model:", args.d_model)
print("")
print("dim_feedforward:", args.dim_feedforward)
print(SEPERATOR)
print("")
# parse_generate_args
def parse_generate_args():
"""
----------
Author: Damon Gwinn
----------
Argparse arguments for generation
----------
"""
parser = argparse.ArgumentParser()
parser.add_argument("-midi_root", type=str, default="./dataset/e_piano/", help="Midi file to prime the generator with")
parser.add_argument("-output_dir", type=str, default="./gen", help="Folder to write generated midi to")
parser.add_argument("-primer_file", type=str, default=None, help="File path or integer index to the evaluation dataset. Default is to select a random index.")
parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")
parser.add_argument("-target_seq_length", type=int, default=1024, help="Target length you'd like the midi to be")
parser.add_argument("-num_prime", type=int, default=256, help="Amount of messages to prime the generator with")
parser.add_argument("-model_weights", type=str, default="./saved_models/model.pickle", help="Pickled model weights file saved with torch.save and model.state_dict()")
parser.add_argument("-beam", type=int, default=0, help="Beam search k. 0 for random probability sample and 1 for greedy")
parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider")
parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")
parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")
return parser.parse_args()
# print_generate_args
def print_generate_args(args):
"""
----------
Author: Damon Gwinn
----------
Prints generation arguments
----------
"""
print(SEPERATOR)
print("midi_root:", args.midi_root)
print("output_dir:", args.output_dir)
print("primer_file:", args.primer_file)
print("force_cpu:", args.force_cpu)
print("")
print("target_seq_length:", args.target_seq_length)
print("num_prime:", args.num_prime)
print("model_weights:", args.model_weights)
print("beam:", args.beam)
print("")
print("rpr:", args.rpr)
print("max_sequence:", args.max_sequence)
print("n_layers:", args.n_layers)
print("num_heads:", args.num_heads)
print("d_model:", args.d_model)
print("")
print("dim_feedforward:", args.dim_feedforward)
print(SEPERATOR)
print("")
# write_model_params
def write_model_params(args, output_file):
"""
----------
Author: Damon Gwinn
----------
Writes given training parameters to text file
----------
"""
o_stream = open(output_file, "w")
o_stream.write("rpr: " + str(args.rpr) + "\n")
o_stream.write("lr: " + str(args.lr) + "\n")
o_stream.write("ce_smoothing: " + str(args.ce_smoothing) + "\n")
o_stream.write("batch_size: " + str(args.batch_size) + "\n")
o_stream.write("max_sequence: " + str(args.max_sequence) + "\n")
o_stream.write("n_layers: " + str(args.n_layers) + "\n")
o_stream.write("num_heads: " + str(args.num_heads) + "\n")
o_stream.write("d_model: " + str(args.d_model) + "\n")
o_stream.write("dim_feedforward: " + str(args.dim_feedforward) + "\n")
o_stream.write("dropout: " + str(args.dropout) + "\n")
o_stream.close()