ETH Fraud Graph Model (v3)
This repository contains artefacts exported from a Colab notebook for Ethereum fraud detection.
Contents
pytorch_model.bin(+model_config.json) — GNN weights (if trained in session).prob_criminal.npy— per-node probabilities (GraphSAGE or fallback).node_scores*.csv— scores with labels/probabilities.feature_columns.json— feature order for inference.- Graph/Viz:
edges_all.csv,nodes_features.csv,*.gexf,*.png.
Quick use (sklearn anomaly example)
from huggingface_hub import hf_hub_download
import json, joblib, pandas as pd
repo_id = "<your-username>/eth-fraud-gnn-uyenuyen-v3"
cols = json.load(open(hf_hub_download(repo_id, filename="feature_columns.json")))
# X = pd.DataFrame(...)[cols]
# iso = joblib.load(hf_hub_download(repo_id, filename="iso_model.joblib"))
# scores = -iso.score_samples(X)