๐ฏ Namo Turn Detector v1 - Japanese
๐ Overview
The Namo Turn Detector is a specialized AI model designed to solve one of the most challenging problems in conversational AI: knowing when a user has finished speaking.
This Japanese-specialist model uses advanced natural language understanding to distinguish between:
- โ Complete utterances (user is done speaking)
- ๐ Incomplete utterances (user will continue speaking)
Built on DistilBERT architecture and optimized with quantized ONNX format, it delivers enterprise-grade performance with minimal latency.
๐ Key Features
- Turn Detection Specialist: Detects end-of-turn vs. continuation in Japanese speech transcripts.
- Low Latency: Optimized with quantized ONNX for <14ms inference.
- Robust Performance: 93.5% accuracy on diverse Japanese utterances.
- Easy Integration: Compatible with Python, ONNX Runtime, and VideoSDK Agents SDK.
- Enterprise Ready: Supports real-time conversational AI and voice assistants.
๐ Performance Metrics
| Metric | Score |
|---|---|
| ๐ฏ Accuracy | 93.52% |
| ๐ F1-Score | 93.87% |
| ๐ช Precision | 89.61% |
| ๐ญ Recall | 98.57% |
| โก Latency | <14ms |
| ๐พ Model Size | ~135MB |
๐ Evaluated on 800+ Japanese utterances from diverse conversational contexts
โก๏ธ Speed Analysis
๐ง Train & Test Scripts
๐ ๏ธ Installation
To use this model, you will need to install the following libraries.
pip install onnxruntime transformers huggingface_hub
๐ Quick Start
You can run inference directly from Hugging Face repository.
import numpy as np
import onnxruntime as ort
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
class TurnDetector:
def __init__(self, repo_id="videosdk-live/Namo-Turn-Detector-v1-Japanese"):
"""
Initializes the detector by downloading the model and tokenizer
from the Hugging Face Hub.
"""
print(f"Loading model from repo: {repo_id}")
# Download the model and tokenizer from the Hub
# Authentication is handled automatically if you are logged in
model_path = hf_hub_download(repo_id=repo_id, filename="model_quant.onnx")
self.tokenizer = AutoTokenizer.from_pretrained(repo_id)
# Set up the ONNX Runtime inference session
self.session = ort.InferenceSession(model_path)
self.max_length = 512
print("โ
Model and tokenizer loaded successfully.")
def predict(self, text: str) -> tuple:
"""
Predicts if a given text utterance is the end of a turn.
Returns (predicted_label, confidence) where:
- predicted_label: 0 for "Not End of Turn", 1 for "End of Turn"
- confidence: confidence score between 0 and 1
"""
# Tokenize the input text
inputs = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_tensors="np"
)
# Prepare the feed dictionary for the ONNX model
feed_dict = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"]
}
# Run inference
outputs = self.session.run(None, feed_dict)
logits = outputs[0]
probabilities = self._softmax(logits[0])
predicted_label = np.argmax(probabilities)
confidence = float(np.max(probabilities))
return predicted_label, confidence
def _softmax(self, x, axis=None):
if axis is None:
axis = -1
exp_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
return exp_x / np.sum(exp_x, axis=axis, keepdims=True)
# --- Example Usage ---
if __name__ == "__main__":
detector = TurnDetector()
sentences = [
"1382ๅนดใซ่ใใฆใญไฟฎ้ไผใฎใใใซๅปบใฆใใใๅง้ขใงใใ", # Expected: End of Turn
"1913ๅนดใใใฉใง็ฌฌ1ๅๆฑๆดใชใชใณใใใฏใ้ไผใ ใใ", # Expected: Not End of Turn
]
for sentence in sentences:
predicted_label, confidence = detector.predict(sentence)
result = "End of Turn" if predicted_label == 1 else "Not End of Turn"
print(f"'{sentence}' -> {result} (confidence: {confidence:.3f})")
print("-" * 50)
๐ค VideoSDK Agents Integration
Integrate this turn detector directly with VideoSDK Agents for production-ready conversational AI applications.
from videosdk_agents import NamoTurnDetectorV1, pre_download_namo_turn_v1_model
#download model
pre_download_namo_turn_v1_model(language="ja")
# Initialize Japanese turn detector for VideoSDK Agents
turn_detector = NamoTurnDetectorV1(language="ja")
๐ Complete Integration Guide - Learn how to use
NamoTurnDetectorV1with VideoSDK Agents
๐ Citation
@model{namo_turn_detector_ja_2025,
title={Namo Turn Detector v1: Japanese},
author={VideoSDK Team},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/videosdk-live/Namo-Turn-Detector-v1-Japanese},
note={ONNX-optimized DistilBERT for turn detection in Japanese}
}
๐ License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
- Downloads last month
- 14
Model tree for videosdk-live/Namo-Turn-Detector-v1-Japanese
Evaluation results
- Accuracy on Namo Turn Detector v1 Test - Japaneseself-reported0.935
- F1 Score on Namo Turn Detector v1 Test - Japaneseself-reported0.939
- Precision on Namo Turn Detector v1 Test - Japaneseself-reported0.896
- Recall on Namo Turn Detector v1 Test - Japaneseself-reported0.986