π― Namo Turn Detector v1 - Portuguese
π Overview
The Namo Turn Detector is a specialized AI model designed to solve one of the most challenging problems in conversational AI: knowing when a user has finished speaking.
This Portuguese-specialist model uses advanced natural language understanding to distinguish between:
- β Complete utterances (user is done speaking)
- π Incomplete utterances (user will continue speaking)
Built on DistilBERT architecture and optimized with quantized ONNX format, it delivers enterprise-grade performance with minimal latency.
π Key Features
- Turn Detection Specialist: Detects end-of-turn vs. continuation in Portuguese speech transcripts.
- Low Latency: Optimized with quantized ONNX for <13ms inference.
- Robust Performance: 86.9% accuracy on diverse Portuguese utterances.
- Easy Integration: Compatible with Python, ONNX Runtime, and VideoSDK Agents SDK.
- Enterprise Ready: Supports real-time conversational AI and voice assistants.
π Performance Metrics
| Metric | Score |
|---|---|
| π― Accuracy | 86.90% |
| π F1-Score | 87.95% |
| πͺ Precision | 79.42% |
| π Recall | 98.52% |
| β‘ Latency | <13ms |
| πΎ Model Size | ~135MB |
π Evaluated on 1300+ Portuguese utterances from diverse conversational contexts
β‘οΈ Speed Analysis
π§ Train & Test Scripts
π οΈ Installation
To use this model, you will need to install the following libraries.
pip install onnxruntime transformers huggingface_hub
π Quick Start
You can run inference directly from Hugging Face repository.
import numpy as np
import onnxruntime as ort
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
class TurnDetector:
def __init__(self, repo_id="videosdk-live/Namo-Turn-Detector-v1-Portuguese"):
"""
Initializes the detector by downloading the model and tokenizer
from the Hugging Face Hub.
"""
print(f"Loading model from repo: {repo_id}")
# Download the model and tokenizer from the Hub
# Authentication is handled automatically if you are logged in
model_path = hf_hub_download(repo_id=repo_id, filename="model_quant.onnx")
self.tokenizer = AutoTokenizer.from_pretrained(repo_id)
# Set up the ONNX Runtime inference session
self.session = ort.InferenceSession(model_path)
self.max_length = 512
print("β
Model and tokenizer loaded successfully.")
def predict(self, text: str) -> tuple:
"""
Predicts if a given text utterance is the end of a turn.
Returns (predicted_label, confidence) where:
- predicted_label: 0 for "Not End of Turn", 1 for "End of Turn"
- confidence: confidence score between 0 and 1
"""
# Tokenize the input text
inputs = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_tensors="np"
)
# Prepare the feed dictionary for the ONNX model
feed_dict = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"]
}
# Run inference
outputs = self.session.run(None, feed_dict)
logits = outputs[0]
probabilities = self._softmax(logits[0])
predicted_label = np.argmax(probabilities)
confidence = float(np.max(probabilities))
return predicted_label, confidence
def _softmax(self, x, axis=None):
if axis is None:
axis = -1
exp_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
return exp_x / np.sum(exp_x, axis=axis, keepdims=True)
# --- Example Usage ---
if __name__ == "__main__":
detector = TurnDetector()
sentences = [
"Sabe como Γ© trocar o usuΓ‘rio do Windows 10?", # Expected: End of Turn
"O menor valor Γ© o mais baixo jΓ‘ encontrado em estudos feitos no", # Expected: Not End of Turn
]
for sentence in sentences:
predicted_label, confidence = detector.predict(sentence)
result = "End of Turn" if predicted_label == 1 else "Not End of Turn"
print(f"'{sentence}' -> {result} (confidence: {confidence:.3f})")
print("-" * 50)
π€ VideoSDK Agents Integration
Integrate this turn detector directly with VideoSDK Agents for production-ready conversational AI applications.
from videosdk_agents import NamoTurnDetectorV1, pre_download_namo_turn_v1_model
#download model
pre_download_namo_turn_v1_model(language="pt")
# Initialize Portuguese turn detector for VideoSDK Agents
turn_detector = NamoTurnDetectorV1(language="pt")
π Complete Integration Guide - Learn how to use
NamoTurnDetectorV1with VideoSDK Agents
π Citation
@model{namo_turn_detector_pt_2025,
title={Namo Turn Detector v1: Portuguese},
author={VideoSDK Team},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/videosdk-live/Namo-Turn-Detector-v1-Portuguese},
note={ONNX-optimized DistilBERT for turn detection in Portuguese}
}
π License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
- Downloads last month
- 22
Model tree for videosdk-live/Namo-Turn-Detector-v1-Portuguese
Evaluation results
- Accuracy on Namo Turn Detector v1 Test - Portugueseself-reported0.869
- F1 Score on Namo Turn Detector v1 Test - Portugueseself-reported0.880
- Precision on Namo Turn Detector v1 Test - Portugueseself-reported0.794
- Recall on Namo Turn Detector v1 Test - Portugueseself-reported0.985