SentenceTransformer based on BAAI/bge-base-en
This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vijay-delete/finetuned-transaction-classification-bge-base-en")
# Run inference
sentences = [
'\nName : Innovative Design Systems GmbH\nCategory: Consulting & Professional Fees, Computer Hardware & Software\nDepartment: Product Development\nLocation: Berlin, Germany\nAmount: 1423.77\nCard: Tech Innovation Fund\nTrip Name: unknown\n',
'\nName : Learning Innovators Group\nCategory: Consulting & Professional Fees, Training & Development\nDepartment: Human Resources\nLocation: Chicago, IL\nAmount: 359.99\nCard: Skills Enhancement Program\nTrip Name: unknown\n',
'\nName : Cultural Cafe & Event Space\nCategory: Meals & Entertainment, Consulting & Professional Fees\nDepartment: Cultural Initiatives\nLocation: Paris, France\nAmount: 764.32\nCard: Art Networking Event\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
bge-base-en-train - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9971 |
| dot_accuracy | 0.0029 |
| manhattan_accuracy | 0.9971 |
| euclidean_accuracy | 0.9971 |
| max_accuracy | 0.9971 |
Triplet
- Dataset:
bge-base-en-eval - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 1.0 |
| dot_accuracy | 0.0 |
| manhattan_accuracy | 1.0 |
| euclidean_accuracy | 1.0 |
| max_accuracy | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 685 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 685 samples:
sentence label type string int details - min: 36 tokens
- mean: 42.06 tokens
- max: 48 tokens
- 0: ~6.57%
- 1: ~7.88%
- 2: ~6.72%
- 3: ~7.01%
- 4: ~7.74%
- 5: ~7.45%
- 6: ~6.42%
- 7: ~7.01%
- 8: ~7.15%
- 9: ~7.15%
- 10: ~7.74%
- 11: ~7.15%
- 12: ~8.18%
- 13: ~5.84%
- Samples:
sentence label
Name : Summit Advisory Partners
Category: Consulting & Professional Fees, Training & Development
Department: Strategic Insights
Location: New York, NY
Amount: 985.45
Card: Leadership Development Program
Trip Name: unknown0
Name : CloudWave Enterprises
Category: Telecommunications, Cloud Services & Hosting
Department: Infrastructure Management
Location: London, UK
Amount: 1450.95
Card: Network Optimization Project
Trip Name: unknown1
Name : AeroTech Communication Solutions
Category: Telecommunications, Cloud Services & Hosting
Department: IT Operations
Location: Singapore
Amount: 915.45
Card: Networking Infrastructure Upgrade
Trip Name: unknown1 - Loss:
BatchSemiHardTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 171 evaluation samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 171 samples:
sentence label type string int details - min: 37 tokens
- mean: 42.08 tokens
- max: 48 tokens
- 0: ~8.77%
- 1: ~7.02%
- 2: ~5.26%
- 3: ~7.60%
- 4: ~7.02%
- 5: ~8.77%
- 6: ~5.85%
- 7: ~4.09%
- 8: ~9.36%
- 9: ~7.60%
- 10: ~7.60%
- 11: ~5.26%
- 12: ~7.60%
- 13: ~8.19%
- Samples:
sentence label
Name : YOLOSTREAM MEDIA
Category: Subscriptions & Memberships, Cloud Services & Hosting
Department: Marketing & IT
Location: New York, NY
Amount: 927.4
Card: Digital Strategy Fund
Trip Name: unknown9
Name : Learning Innovators Group
Category: Consulting & Professional Fees, Training & Development
Department: Human Resources
Location: Chicago, IL
Amount: 359.99
Card: Skills Enhancement Program
Trip Name: unknown6
Name : Globetraining Solutions
Category: Subscriptions & Memberships, Training & Development
Department: Human Resources
Location: Newark, NJ
Amount: 523.47
Card: Employee Skill Enhancement
Trip Name: unknown6 - Loss:
BatchSemiHardTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|---|---|---|---|---|---|
| 0 | 0 | - | - | - | 0.9650 |
| 2.3256 | 100 | 4.6242 | 4.0409 | - | 0.9956 |
| 4.6512 | 200 | 4.2332 | 3.9329 | - | 0.9971 |
| 5.0 | 215 | - | - | 1.0 | - |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.4
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchSemiHardTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 1
Model tree for vijay-delete/finetuned-transaction-classification-bge-base-en
Base model
BAAI/bge-base-enEvaluation results
- Cosine Accuracy on bge base en trainself-reported0.997
- Dot Accuracy on bge base en trainself-reported0.003
- Manhattan Accuracy on bge base en trainself-reported0.997
- Euclidean Accuracy on bge base en trainself-reported0.997
- Max Accuracy on bge base en trainself-reported0.997
- Cosine Accuracy on bge base en evalself-reported1.000
- Dot Accuracy on bge base en evalself-reported0.000
- Manhattan Accuracy on bge base en evalself-reported1.000
- Euclidean Accuracy on bge base en evalself-reported1.000
- Max Accuracy on bge base en evalself-reported1.000