Qwen2.5-3B-Instruct
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the self_ask_train_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.8770
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.0064 | 0.0889 | 100 | 0.9965 |
| 0.9226 | 0.1778 | 200 | 0.9364 |
| 0.9237 | 0.2667 | 300 | 0.9182 |
| 0.9025 | 0.3556 | 400 | 0.9070 |
| 0.9169 | 0.4444 | 500 | 0.8998 |
| 0.8682 | 0.5333 | 600 | 0.8932 |
| 0.8827 | 0.6222 | 700 | 0.8889 |
| 0.9096 | 0.7111 | 800 | 0.8853 |
| 0.9054 | 0.8 | 900 | 0.8811 |
| 0.86 | 0.8889 | 1000 | 0.8786 |
| 0.9017 | 0.9778 | 1100 | 0.8765 |
| 0.8243 | 1.0667 | 1200 | 0.8799 |
| 0.8015 | 1.1556 | 1300 | 0.8798 |
| 0.7866 | 1.2444 | 1400 | 0.8785 |
| 0.8163 | 1.3333 | 1500 | 0.8744 |
| 0.8066 | 1.4222 | 1600 | 0.8725 |
| 0.8194 | 1.5111 | 1700 | 0.8727 |
| 0.8274 | 1.6 | 1800 | 0.8706 |
| 0.7773 | 1.6889 | 1900 | 0.8697 |
| 0.7985 | 1.7778 | 2000 | 0.8678 |
| 0.7761 | 1.8667 | 2100 | 0.8662 |
| 0.8017 | 1.9556 | 2200 | 0.8655 |
| 0.7595 | 2.0444 | 2300 | 0.8771 |
| 0.7305 | 2.1333 | 2400 | 0.8783 |
| 0.7071 | 2.2222 | 2500 | 0.8790 |
| 0.7342 | 2.3111 | 2600 | 0.8780 |
| 0.7255 | 2.4 | 2700 | 0.8774 |
| 0.7483 | 2.4889 | 2800 | 0.8779 |
| 0.7285 | 2.5778 | 2900 | 0.8776 |
| 0.7462 | 2.6667 | 3000 | 0.8768 |
| 0.7338 | 2.7556 | 3100 | 0.8768 |
| 0.7248 | 2.8444 | 3200 | 0.8769 |
| 0.7053 | 2.9333 | 3300 | 0.8770 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 2.21.0
- Tokenizers 0.20.3
- Downloads last month
- 1