Vector Quantization using Gaussian Variational Autoencoder
This repository contains the official implementation of Gaussian Quant (GQ), a novel method for vector quantization presented in the paper "Vector Quantization using Gaussian Variational Autoencoder".
GQ proposes a simple yet effective technique that converts a Gaussian Variational Autoencoder (VAE) into a VQ-VAE without the need for additional training. It achieves this by generating random Gaussian noise as a codebook and finding the closest noise to the posterior mean. Theoretically, it's proven that a small quantization error is guaranteed when the logarithm of the codebook size exceeds the bits-back coding rate. Empirically, GQ, combined with a heuristic called target divergence constraint (TDC), outperforms previous VQ-VAEs like VQGAN, FSQ, LFQ, and BSQ on both UNet and ViT architectures.
- \ud83d\udcda Paper on Hugging Face: Vector Quantization using Gaussian Variational Autoencoder
- \ud83c\udf10 Project Page: https://tongdaxu.github.io/pages/gq.html
- \ud83d\udcbb GitHub Repository: https://github.com/tongdaxu/VQ-VAE-from-Gaussian-VAE
Quick Start & Usage
This section provides a quick guide to installing the necessary dependencies, downloading pre-trained models, and inferring with them. For more details and training instructions, please refer to the GitHub repository.
Install dependency
- Install dependencies in
environment.yaml:conda env create --file=environment.yaml conda activate tokenizer
Install this package
- From source:
pip install -e . - [Optional] CUDA kernel for fast run time:
cd gq_cuda_extension pip install --no-build-isolation -e .
Download pre-trained model
- Download model "sd3unet_gq_0.25.ckpt" from Huggingface:
mkdir model_256 mv "sd3unet_gq_0.25.ckpt" ./model_256 - This is a VQ-VAE with
codebook_size=2**16=65536andcodebook_dim=16.
Infer the model as VQ-VAE
- Then use the model as follows:
from PIL import Image from torchvision import transforms from omegaconf import OmegaConf from pit.util import instantiate_from_config import torch transform = transforms.Compose([ transforms.Resize((256,256)), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) img = transform(Image.open("demo.png")).unsqueeze(0).cuda() config = OmegaConf.load("./configs/sd3unet_gq_0.25.yaml") vae = instantiate_from_config(config.model) vae.load_state_dict( torch.load("models_256/sd3unet_gq_0.25.ckpt", map_location=torch.device('cpu'))["state_dict"],strict=False ) vae = vae.eval().cuda() vae.eval() z, log = vae.encode(img, return_reg_log=True) img_hat = vae.dequant(log["indices"]) # discrete indices img_hat = vae.decode(z) # quantized latent
Infer the model as Gaussian VAE
- Alternatively, the model can be used as a Vanilla Gaussian VAE:
from PIL import Image from torchvision import transforms from omegaconf import OmegaConf from pit.util import instantiate_from_config import torch transform = transforms.Compose([ transforms.Resize((256,256)), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) img = transform(Image.open("demo.png")).unsqueeze(0).cuda() config = OmegaConf.load("./configs/sd3unet_gq_0.25.yaml") vae = instantiate_from_config(config.model) vae.load_state_dict( torch.load("models_256/sd3unet_gq_0.25.ckpt", map_location=torch.device('cpu'))["state_dict"],strict=False ) vae = vae.eval().cuda() vae.eval() z = vae.encode(img, return_reg_log=True)[1]["zhat_noquant"] # Gaussian VAE latents img_hat = vae.decode(z)
Citation
If you find our work helpful or inspiring, please feel free to cite it:
@misc{xu2025vectorquantizationusinggaussian,
title={Vector Quantization using Gaussian Variational Autoencoder},
author={Tongda Xu and Wendi Zheng and Jiajun He and Jose Miguel Hernandez-Lobato and Yan Wang and Ya-Qin Zhang and Jie Tang},
year={2025},
eprint={2512.06609},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2512.06609},
}