See axolotl config
axolotl version: 0.10.0.dev0
base_model: Qwen/Qwen2.5-coder-3B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
chat_template: qwen_25
adapter: qlora
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- c_attn
- c_proj
- w1
- w2
- q_proj
- v_proj
- k_proj
- o_proj
load_in_4bit: true
bnb_4bit_compute_dtype: float16
bnb_4bit_use_double_quant: true
bnb_4bit_quant_type: nf4
datasets:
- path: ./datasets/generic_formatted_data.jsonl
type: alpaca
val_set_size: 0.01
dataset_prepared_path:
sequence_len: 2048
pad_to_sequence_len: true
output_dir: ./outputs/qwen2.5-coder-3b-lora
num_epochs: 3
micro_batch_size: 2
gradient_accumulation_steps: 8
evals_per_epoch: 1
saves_per_epoch: 1
optimizer: adamw_bnb_8bit
learning_rate: 2e-5
lr_scheduler: cosine
warmup_steps: 50
gradient_checkpointing: true
fp16: true
bf16: false
tf32: true
flash_attention: true
eager_attention: false
logging_steps: 1
debug: true
wandb_project: qwen-coder
wandb_name: qwen2.5-coder-3b-lora
wandb_log_model: "false"
wandb_mode: disabled
outputs/qwen2.5-coder-3b-lora
This model is a fine-tuned version of Qwen/Qwen2.5-coder-3B on the ./datasets/generic_formatted_data.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.0817
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 1375
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.0456 | 0.0022 | 1 | 0.9417 |
| 0.3029 | 1.0 | 459 | 0.1403 |
| 0.044 | 2.0 | 918 | 0.0817 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support