all-MiniLM-L6-v10-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'appetizer onion ring',
'nuttella pizza',
'high quality sports bra',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0017 | 100 | 13.3171 |
| 0.0033 | 200 | 12.9799 |
| 0.0050 | 300 | 12.5133 |
| 0.0066 | 400 | 11.9388 |
| 0.0083 | 500 | 11.0616 |
| 0.0099 | 600 | 10.2712 |
| 0.0116 | 700 | 9.5253 |
| 0.0132 | 800 | 8.7706 |
| 0.0149 | 900 | 8.4333 |
| 0.0165 | 1000 | 8.0902 |
| 0.0182 | 1100 | 7.8862 |
| 0.0198 | 1200 | 7.7362 |
| 0.0215 | 1300 | 7.6007 |
| 0.0231 | 1400 | 7.5304 |
| 0.0248 | 1500 | 7.4249 |
| 0.0264 | 1600 | 7.3035 |
| 0.0281 | 1700 | 7.2026 |
| 0.0297 | 1800 | 7.1572 |
| 0.0314 | 1900 | 7.0523 |
| 0.0330 | 2000 | 7.1158 |
| 0.0347 | 2100 | 6.9856 |
| 0.0363 | 2200 | 7.0865 |
| 0.0380 | 2300 | 6.9496 |
| 0.0396 | 2400 | 6.9294 |
| 0.0413 | 2500 | 6.8825 |
| 0.0430 | 2600 | 6.8218 |
| 0.0446 | 2700 | 6.8416 |
| 0.0463 | 2800 | 6.7184 |
| 0.0479 | 2900 | 6.9183 |
| 0.0496 | 3000 | 6.7166 |
| 0.0512 | 3100 | 6.6821 |
| 0.0529 | 3200 | 6.6074 |
| 0.0545 | 3300 | 6.6141 |
| 0.0562 | 3400 | 6.5374 |
| 0.0578 | 3500 | 6.4776 |
| 0.0595 | 3600 | 6.5701 |
| 0.0611 | 3700 | 6.5026 |
| 0.0628 | 3800 | 6.6502 |
| 0.0644 | 3900 | 6.5023 |
| 0.0661 | 4000 | 6.5526 |
| 0.0677 | 4100 | 6.6594 |
| 0.0694 | 4200 | 6.3643 |
| 0.0710 | 4300 | 6.3783 |
| 0.0727 | 4400 | 6.3222 |
| 0.0743 | 4500 | 6.3401 |
| 0.0760 | 4600 | 6.4005 |
| 0.0776 | 4700 | 6.3605 |
| 0.0793 | 4800 | 6.348 |
| 0.0810 | 4900 | 6.3406 |
| 0.0826 | 5000 | 6.4156 |
| 0.0843 | 5100 | 6.3786 |
| 0.0859 | 5200 | 6.376 |
| 0.0876 | 5300 | 6.2363 |
| 0.0892 | 5400 | 6.2185 |
| 0.0909 | 5500 | 6.2554 |
| 0.0925 | 5600 | 6.2177 |
| 0.0942 | 5700 | 6.3924 |
| 0.0958 | 5800 | 6.2897 |
| 0.0975 | 5900 | 6.272 |
| 0.0991 | 6000 | 6.0247 |
| 0.1008 | 6100 | 6.194 |
| 0.1024 | 6200 | 6.2757 |
| 0.1041 | 6300 | 6.2408 |
| 0.1057 | 6400 | 6.253 |
| 0.1074 | 6500 | 6.0605 |
| 0.1090 | 6600 | 6.0672 |
| 0.1107 | 6700 | 6.0414 |
| 0.1123 | 6800 | 6.0823 |
| 0.1140 | 6900 | 6.1962 |
| 0.1156 | 7000 | 6.0868 |
| 0.1173 | 7100 | 6.0795 |
| 0.1189 | 7200 | 5.9656 |
| 0.1206 | 7300 | 5.9785 |
| 0.1223 | 7400 | 6.0722 |
| 0.1239 | 7500 | 5.9443 |
| 0.1256 | 7600 | 5.8786 |
| 0.1272 | 7700 | 5.8007 |
| 0.1289 | 7800 | 5.9206 |
| 0.1305 | 7900 | 5.918 |
| 0.1322 | 8000 | 5.9443 |
| 0.1338 | 8100 | 5.8764 |
| 0.1355 | 8200 | 5.867 |
| 0.1371 | 8300 | 5.8087 |
| 0.1388 | 8400 | 5.9884 |
| 0.1404 | 8500 | 5.8741 |
| 0.1421 | 8600 | 5.9699 |
| 0.1437 | 8700 | 5.8671 |
| 0.1454 | 8800 | 5.8278 |
| 0.1470 | 8900 | 5.8892 |
| 0.1487 | 9000 | 5.7437 |
| 0.1503 | 9100 | 5.8069 |
| 0.1520 | 9200 | 6.0235 |
| 0.1536 | 9300 | 5.7214 |
| 0.1553 | 9400 | 5.7893 |
| 0.1569 | 9500 | 5.7406 |
| 0.1586 | 9600 | 5.8035 |
| 0.1602 | 9700 | 5.7965 |
| 0.1619 | 9800 | 5.638 |
| 0.1636 | 9900 | 5.8263 |
| 0.1652 | 10000 | 5.7995 |
| 0.1669 | 10100 | 5.5805 |
| 0.1685 | 10200 | 5.632 |
| 0.1702 | 10300 | 5.6944 |
| 0.1718 | 10400 | 5.5818 |
| 0.1735 | 10500 | 5.8598 |
| 0.1751 | 10600 | 5.7255 |
| 0.1768 | 10700 | 5.7536 |
| 0.1784 | 10800 | 5.6536 |
| 0.1801 | 10900 | 5.6417 |
| 0.1817 | 11000 | 5.6719 |
| 0.1834 | 11100 | 5.566 |
| 0.1850 | 11200 | 5.4893 |
| 0.1867 | 11300 | 5.7412 |
| 0.1883 | 11400 | 5.6838 |
| 0.1900 | 11500 | 5.6272 |
| 0.1916 | 11600 | 5.6538 |
| 0.1933 | 11700 | 5.7176 |
| 0.1949 | 11800 | 5.4923 |
| 0.1966 | 11900 | 5.7643 |
| 0.1982 | 12000 | 5.5674 |
| 0.1999 | 12100 | 5.6896 |
| 0.2015 | 12200 | 5.4385 |
| 0.2032 | 12300 | 5.5851 |
| 0.2049 | 12400 | 5.5132 |
| 0.2065 | 12500 | 5.3329 |
| 0.2082 | 12600 | 5.4218 |
| 0.2098 | 12700 | 5.5171 |
| 0.2115 | 12800 | 5.3414 |
| 0.2131 | 12900 | 5.4921 |
| 0.2148 | 13000 | 5.7687 |
| 0.2164 | 13100 | 5.7119 |
| 0.2181 | 13200 | 5.4975 |
| 0.2197 | 13300 | 5.4514 |
| 0.2214 | 13400 | 5.497 |
| 0.2230 | 13500 | 5.558 |
| 0.2247 | 13600 | 5.4207 |
| 0.2263 | 13700 | 5.5901 |
| 0.2280 | 13800 | 5.2041 |
| 0.2296 | 13900 | 5.2999 |
| 0.2313 | 14000 | 5.3373 |
| 0.2329 | 14100 | 5.789 |
| 0.2346 | 14200 | 5.3292 |
| 0.2362 | 14300 | 5.4059 |
| 0.2379 | 14400 | 5.1849 |
| 0.2395 | 14500 | 5.1262 |
| 0.2412 | 14600 | 5.4339 |
| 0.2429 | 14700 | 5.5185 |
| 0.2445 | 14800 | 5.3286 |
| 0.2462 | 14900 | 5.4141 |
| 0.2478 | 15000 | 5.3554 |
| 0.2495 | 15100 | 5.3489 |
| 0.2511 | 15200 | 5.4849 |
| 0.2528 | 15300 | 5.3656 |
| 0.2544 | 15400 | 5.32 |
| 0.2561 | 15500 | 5.3523 |
| 0.2577 | 15600 | 5.1146 |
| 0.2594 | 15700 | 5.2816 |
| 0.2610 | 15800 | 5.2296 |
| 0.2627 | 15900 | 5.3386 |
| 0.2643 | 16000 | 5.4917 |
| 0.2660 | 16100 | 5.0524 |
| 0.2676 | 16200 | 5.1657 |
| 0.2693 | 16300 | 5.1431 |
| 0.2709 | 16400 | 5.166 |
| 0.2726 | 16500 | 5.5738 |
| 0.2742 | 16600 | 5.2088 |
| 0.2759 | 16700 | 5.2198 |
| 0.2775 | 16800 | 5.2709 |
| 0.2792 | 16900 | 5.4027 |
| 0.2808 | 17000 | 5.25 |
| 0.2825 | 17100 | 5.1519 |
| 0.2842 | 17200 | 5.1347 |
| 0.2858 | 17300 | 5.2346 |
| 0.2875 | 17400 | 5.4128 |
| 0.2891 | 17500 | 5.1954 |
| 0.2908 | 17600 | 5.3787 |
| 0.2924 | 17700 | 5.1731 |
| 0.2941 | 17800 | 5.3714 |
| 0.2957 | 17900 | 5.2113 |
| 0.2974 | 18000 | 5.0819 |
| 0.2990 | 18100 | 5.0443 |
| 0.3007 | 18200 | 5.2041 |
| 0.3023 | 18300 | 5.1385 |
| 0.3040 | 18400 | 5.2195 |
| 0.3056 | 18500 | 5.2233 |
| 0.3073 | 18600 | 5.1198 |
| 0.3089 | 18700 | 5.106 |
| 0.3106 | 18800 | 5.335 |
| 0.3122 | 18900 | 5.1231 |
| 0.3139 | 19000 | 5.1777 |
| 0.3155 | 19100 | 5.5752 |
| 0.3172 | 19200 | 5.1902 |
| 0.3188 | 19300 | 5.0777 |
| 0.3205 | 19400 | 5.211 |
| 0.3221 | 19500 | 5.1402 |
| 0.3238 | 19600 | 5.1458 |
| 0.3255 | 19700 | 5.1091 |
| 0.3271 | 19800 | 5.1471 |
| 0.3288 | 19900 | 5.1804 |
| 0.3304 | 20000 | 4.9678 |
| 0.3321 | 20100 | 5.1655 |
| 0.3337 | 20200 | 4.9735 |
| 0.3354 | 20300 | 5.0536 |
| 0.3370 | 20400 | 5.347 |
| 0.3387 | 20500 | 4.9856 |
| 0.3403 | 20600 | 5.1035 |
| 0.3420 | 20700 | 5.0428 |
| 0.3436 | 20800 | 5.0856 |
| 0.3453 | 20900 | 5.0776 |
| 0.3469 | 21000 | 5.2031 |
| 0.3486 | 21100 | 5.1491 |
| 0.3502 | 21200 | 5.3685 |
| 0.3519 | 21300 | 4.6901 |
| 0.3535 | 21400 | 4.9809 |
| 0.3552 | 21500 | 4.9273 |
| 0.3568 | 21600 | 4.7568 |
| 0.3585 | 21700 | 4.9064 |
| 0.3601 | 21800 | 5.0399 |
| 0.3618 | 21900 | 4.9202 |
| 0.3635 | 22000 | 5.3848 |
| 0.3651 | 22100 | 4.9239 |
| 0.3668 | 22200 | 4.8744 |
| 0.3684 | 22300 | 4.8597 |
| 0.3701 | 22400 | 4.9226 |
| 0.3717 | 22500 | 5.0358 |
| 0.3734 | 22600 | 4.9895 |
| 0.3750 | 22700 | 5.004 |
| 0.3767 | 22800 | 5.0441 |
| 0.3783 | 22900 | 4.8129 |
| 0.3800 | 23000 | 4.7954 |
| 0.3816 | 23100 | 4.8156 |
| 0.3833 | 23200 | 5.0714 |
| 0.3849 | 23300 | 4.8543 |
| 0.3866 | 23400 | 5.1728 |
| 0.3882 | 23500 | 5.1891 |
| 0.3899 | 23600 | 5.087 |
| 0.3915 | 23700 | 4.9069 |
| 0.3932 | 23800 | 4.9357 |
| 0.3948 | 23900 | 4.8324 |
| 0.3965 | 24000 | 4.8091 |
| 0.3981 | 24100 | 4.7944 |
| 0.3998 | 24200 | 5.0023 |
| 0.4014 | 24300 | 4.8745 |
| 0.4031 | 24400 | 5.0884 |
| 0.4048 | 24500 | 5.0468 |
| 0.4064 | 24600 | 4.8575 |
| 0.4081 | 24700 | 4.7555 |
| 0.4097 | 24800 | 4.6052 |
| 0.4114 | 24900 | 4.8935 |
| 0.4130 | 25000 | 4.8049 |
| 0.4147 | 25100 | 4.9014 |
| 0.4163 | 25200 | 4.7199 |
| 0.4180 | 25300 | 4.6999 |
| 0.4196 | 25400 | 4.6417 |
| 0.4213 | 25500 | 5.2115 |
| 0.4229 | 25600 | 4.9171 |
| 0.4246 | 25700 | 4.9448 |
| 0.4262 | 25800 | 4.6811 |
| 0.4279 | 25900 | 5.1181 |
| 0.4295 | 26000 | 4.8061 |
| 0.4312 | 26100 | 4.815 |
| 0.4328 | 26200 | 4.7731 |
| 0.4345 | 26300 | 4.7304 |
| 0.4361 | 26400 | 4.9838 |
| 0.4378 | 26500 | 4.7998 |
| 0.4394 | 26600 | 4.6946 |
| 0.4411 | 26700 | 4.7755 |
| 0.4427 | 26800 | 4.7347 |
| 0.4444 | 26900 | 4.8356 |
| 0.4461 | 27000 | 4.8642 |
| 0.4477 | 27100 | 4.9273 |
| 0.4494 | 27200 | 4.7114 |
| 0.4510 | 27300 | 4.6088 |
| 0.4527 | 27400 | 4.5046 |
| 0.4543 | 27500 | 4.4516 |
| 0.4560 | 27600 | 4.7491 |
| 0.4576 | 27700 | 4.943 |
| 0.4593 | 27800 | 4.877 |
| 0.4609 | 27900 | 4.6912 |
| 0.4626 | 28000 | 4.8373 |
| 0.4642 | 28100 | 5.0152 |
| 0.4659 | 28200 | 4.7008 |
| 0.4675 | 28300 | 4.7549 |
| 0.4692 | 28400 | 4.5287 |
| 0.4708 | 28500 | 4.8211 |
| 0.4725 | 28600 | 4.775 |
| 0.4741 | 28700 | 4.6977 |
| 0.4758 | 28800 | 4.9122 |
| 0.4774 | 28900 | 4.9067 |
| 0.4791 | 29000 | 4.8326 |
| 0.4807 | 29100 | 4.4536 |
| 0.4824 | 29200 | 5.0073 |
| 0.4840 | 29300 | 4.5887 |
| 0.4857 | 29400 | 4.7829 |
| 0.4874 | 29500 | 4.6503 |
| 0.4890 | 29600 | 4.5202 |
| 0.4907 | 29700 | 4.9086 |
| 0.4923 | 29800 | 4.743 |
| 0.4940 | 29900 | 4.7819 |
| 0.4956 | 30000 | 4.6159 |
| 0.4973 | 30100 | 5.015 |
| 0.4989 | 30200 | 4.5351 |
| 0.5006 | 30300 | 5.0421 |
| 0.5022 | 30400 | 4.5394 |
| 0.5039 | 30500 | 4.7516 |
| 0.5055 | 30600 | 4.9236 |
| 0.5072 | 30700 | 4.833 |
| 0.5088 | 30800 | 4.5406 |
| 0.5105 | 30900 | 4.7325 |
| 0.5121 | 31000 | 4.6807 |
| 0.5138 | 31100 | 4.6052 |
| 0.5154 | 31200 | 4.7922 |
| 0.5171 | 31300 | 4.5013 |
| 0.5187 | 31400 | 4.6579 |
| 0.5204 | 31500 | 4.5152 |
| 0.5220 | 31600 | 4.535 |
| 0.5237 | 31700 | 4.4473 |
| 0.5254 | 31800 | 5.0363 |
| 0.5270 | 31900 | 4.4849 |
| 0.5287 | 32000 | 4.6337 |
| 0.5303 | 32100 | 4.3874 |
| 0.5320 | 32200 | 4.6289 |
| 0.5336 | 32300 | 4.5746 |
| 0.5353 | 32400 | 4.7222 |
| 0.5369 | 32500 | 4.3974 |
| 0.5386 | 32600 | 4.8369 |
| 0.5402 | 32700 | 4.6921 |
| 0.5419 | 32800 | 4.603 |
| 0.5435 | 32900 | 4.4542 |
| 0.5452 | 33000 | 4.6976 |
| 0.5468 | 33100 | 4.5403 |
| 0.5485 | 33200 | 4.7398 |
| 0.5501 | 33300 | 4.9736 |
| 0.5518 | 33400 | 4.6373 |
| 0.5534 | 33500 | 4.7195 |
| 0.5551 | 33600 | 4.4237 |
| 0.5567 | 33700 | 4.4319 |
| 0.5584 | 33800 | 4.6785 |
| 0.5600 | 33900 | 4.6265 |
| 0.5617 | 34000 | 4.8585 |
| 0.5633 | 34100 | 4.7605 |
| 0.5650 | 34200 | 4.5328 |
| 0.5667 | 34300 | 4.4722 |
| 0.5683 | 34400 | 4.5651 |
| 0.5700 | 34500 | 4.5748 |
| 0.5716 | 34600 | 4.4733 |
| 0.5733 | 34700 | 4.5675 |
| 0.5749 | 34800 | 4.7731 |
| 0.5766 | 34900 | 4.5179 |
| 0.5782 | 35000 | 4.5138 |
| 0.5799 | 35100 | 4.4146 |
| 0.5815 | 35200 | 4.3349 |
| 0.5832 | 35300 | 4.6789 |
| 0.5848 | 35400 | 4.6405 |
| 0.5865 | 35500 | 4.6118 |
| 0.5881 | 35600 | 4.5165 |
| 0.5898 | 35700 | 4.5453 |
| 0.5914 | 35800 | 4.5286 |
| 0.5931 | 35900 | 4.4041 |
| 0.5947 | 36000 | 4.5261 |
| 0.5964 | 36100 | 4.3889 |
| 0.5980 | 36200 | 4.4186 |
| 0.5997 | 36300 | 4.7924 |
| 0.6013 | 36400 | 4.6042 |
| 0.6030 | 36500 | 4.8725 |
| 0.6046 | 36600 | 4.509 |
| 0.6063 | 36700 | 4.3407 |
| 0.6080 | 36800 | 4.5877 |
| 0.6096 | 36900 | 4.6656 |
| 0.6113 | 37000 | 4.405 |
| 0.6129 | 37100 | 4.3588 |
| 0.6146 | 37200 | 4.7821 |
| 0.6162 | 37300 | 4.4748 |
| 0.6179 | 37400 | 4.6611 |
| 0.6195 | 37500 | 4.6503 |
| 0.6212 | 37600 | 4.3817 |
| 0.6228 | 37700 | 4.3708 |
| 0.6245 | 37800 | 4.3686 |
| 0.6261 | 37900 | 4.2679 |
| 0.6278 | 38000 | 4.4258 |
| 0.6294 | 38100 | 4.1701 |
| 0.6311 | 38200 | 4.3627 |
| 0.6327 | 38300 | 4.4051 |
| 0.6344 | 38400 | 4.4693 |
| 0.6360 | 38500 | 4.3831 |
| 0.6377 | 38600 | 4.0856 |
| 0.6393 | 38700 | 4.7917 |
| 0.6410 | 38800 | 4.4803 |
| 0.6426 | 38900 | 4.7869 |
| 0.6443 | 39000 | 4.5376 |
| 0.6460 | 39100 | 4.4829 |
| 0.6476 | 39200 | 4.7344 |
| 0.6493 | 39300 | 4.4035 |
| 0.6509 | 39400 | 4.5464 |
| 0.6526 | 39500 | 4.3932 |
| 0.6542 | 39600 | 4.3088 |
| 0.6559 | 39700 | 4.3844 |
| 0.6575 | 39800 | 4.4635 |
| 0.6592 | 39900 | 4.205 |
| 0.6608 | 40000 | 4.5705 |
| 0.6625 | 40100 | 4.541 |
| 0.6641 | 40200 | 4.2803 |
| 0.6658 | 40300 | 4.4778 |
| 0.6674 | 40400 | 4.3103 |
| 0.6691 | 40500 | 4.4215 |
| 0.6707 | 40600 | 4.1347 |
| 0.6724 | 40700 | 4.4549 |
| 0.6740 | 40800 | 4.4641 |
| 0.6757 | 40900 | 4.6036 |
| 0.6773 | 41000 | 4.1967 |
| 0.6790 | 41100 | 4.4231 |
| 0.6806 | 41200 | 4.4425 |
| 0.6823 | 41300 | 4.5512 |
| 0.6839 | 41400 | 4.4586 |
| 0.6856 | 41500 | 4.4396 |
| 0.6873 | 41600 | 4.281 |
| 0.6889 | 41700 | 4.4691 |
| 0.6906 | 41800 | 4.299 |
| 0.6922 | 41900 | 4.4199 |
| 0.6939 | 42000 | 4.325 |
| 0.6955 | 42100 | 4.8069 |
| 0.6972 | 42200 | 4.4005 |
| 0.6988 | 42300 | 4.3462 |
| 0.7005 | 42400 | 4.4979 |
| 0.7021 | 42500 | 4.3421 |
| 0.7038 | 42600 | 4.383 |
| 0.7054 | 42700 | 4.2318 |
| 0.7071 | 42800 | 4.4444 |
| 0.7087 | 42900 | 4.3806 |
| 0.7104 | 43000 | 4.468 |
| 0.7120 | 43100 | 4.2501 |
| 0.7137 | 43200 | 4.3727 |
| 0.7153 | 43300 | 4.388 |
| 0.7170 | 43400 | 4.3485 |
| 0.7186 | 43500 | 4.343 |
| 0.7203 | 43600 | 4.4982 |
| 0.7219 | 43700 | 4.3745 |
| 0.7236 | 43800 | 4.4955 |
| 0.7252 | 43900 | 4.4546 |
| 0.7269 | 44000 | 4.2144 |
| 0.7286 | 44100 | 4.5755 |
| 0.7302 | 44200 | 4.1601 |
| 0.7319 | 44300 | 4.2967 |
| 0.7335 | 44400 | 4.4625 |
| 0.7352 | 44500 | 4.2364 |
| 0.7368 | 44600 | 4.5778 |
| 0.7385 | 44700 | 4.2853 |
| 0.7401 | 44800 | 4.4863 |
| 0.7418 | 44900 | 4.1957 |
| 0.7434 | 45000 | 4.2534 |
| 0.7451 | 45100 | 4.3133 |
| 0.7467 | 45200 | 4.5476 |
| 0.7484 | 45300 | 4.3681 |
| 0.7500 | 45400 | 4.3973 |
| 0.7517 | 45500 | 4.1377 |
| 0.7533 | 45600 | 4.2803 |
| 0.7550 | 45700 | 4.4228 |
| 0.7566 | 45800 | 4.0531 |
| 0.7583 | 45900 | 3.9899 |
| 0.7599 | 46000 | 4.3483 |
| 0.7616 | 46100 | 4.1261 |
| 0.7632 | 46200 | 4.5054 |
| 0.7649 | 46300 | 4.0876 |
| 0.7665 | 46400 | 4.3376 |
| 0.7682 | 46500 | 4.1925 |
| 0.7699 | 46600 | 4.2739 |
| 0.7715 | 46700 | 4.3682 |
| 0.7732 | 46800 | 4.441 |
| 0.7748 | 46900 | 4.4299 |
| 0.7765 | 47000 | 4.2043 |
| 0.7781 | 47100 | 4.3618 |
| 0.7798 | 47200 | 4.1743 |
| 0.7814 | 47300 | 4.4187 |
| 0.7831 | 47400 | 4.2229 |
| 0.7847 | 47500 | 4.3314 |
| 0.7864 | 47600 | 4.0925 |
| 0.7880 | 47700 | 4.0808 |
| 0.7897 | 47800 | 4.5237 |
| 0.7913 | 47900 | 4.1168 |
| 0.7930 | 48000 | 4.2941 |
| 0.7946 | 48100 | 4.384 |
| 0.7963 | 48200 | 4.7188 |
| 0.7979 | 48300 | 4.3229 |
| 0.7996 | 48400 | 4.2011 |
| 0.8012 | 48500 | 4.2779 |
| 0.8029 | 48600 | 4.3589 |
| 0.8045 | 48700 | 4.2659 |
| 0.8062 | 48800 | 4.5345 |
| 0.8079 | 48900 | 3.7909 |
| 0.8095 | 49000 | 4.4958 |
| 0.8112 | 49100 | 4.1165 |
| 0.8128 | 49200 | 4.1192 |
| 0.8145 | 49300 | 4.5164 |
| 0.8161 | 49400 | 4.0759 |
| 0.8178 | 49500 | 4.2756 |
| 0.8194 | 49600 | 4.6745 |
| 0.8211 | 49700 | 4.2513 |
| 0.8227 | 49800 | 4.0886 |
| 0.8244 | 49900 | 4.2688 |
| 0.8260 | 50000 | 4.2109 |
| 0.8277 | 50100 | 3.9525 |
| 0.8293 | 50200 | 4.0889 |
| 0.8310 | 50300 | 4.1099 |
| 0.8326 | 50400 | 3.9672 |
| 0.8343 | 50500 | 4.2584 |
| 0.8359 | 50600 | 3.9683 |
| 0.8376 | 50700 | 4.1123 |
| 0.8392 | 50800 | 4.0991 |
| 0.8409 | 50900 | 4.2131 |
| 0.8425 | 51000 | 3.9701 |
| 0.8442 | 51100 | 4.6632 |
| 0.8458 | 51200 | 4.5646 |
| 0.8475 | 51300 | 4.3518 |
| 0.8492 | 51400 | 4.0883 |
| 0.8508 | 51500 | 4.5185 |
| 0.8525 | 51600 | 4.3088 |
| 0.8541 | 51700 | 4.2788 |
| 0.8558 | 51800 | 4.4045 |
| 0.8574 | 51900 | 4.1641 |
| 0.8591 | 52000 | 4.4632 |
| 0.8607 | 52100 | 4.1843 |
| 0.8624 | 52200 | 4.2139 |
| 0.8640 | 52300 | 4.2557 |
| 0.8657 | 52400 | 4.0797 |
| 0.8673 | 52500 | 4.0446 |
| 0.8690 | 52600 | 4.4987 |
| 0.8706 | 52700 | 4.1227 |
| 0.8723 | 52800 | 4.097 |
| 0.8739 | 52900 | 4.2207 |
| 0.8756 | 53000 | 4.1675 |
| 0.8772 | 53100 | 3.964 |
| 0.8789 | 53200 | 4.3966 |
| 0.8805 | 53300 | 4.173 |
| 0.8822 | 53400 | 4.704 |
| 0.8838 | 53500 | 4.1042 |
| 0.8855 | 53600 | 3.9662 |
| 0.8871 | 53700 | 4.315 |
| 0.8888 | 53800 | 4.295 |
| 0.8905 | 53900 | 3.997 |
| 0.8921 | 54000 | 4.4502 |
| 0.8938 | 54100 | 4.479 |
| 0.8954 | 54200 | 4.0461 |
| 0.8971 | 54300 | 4.2015 |
| 0.8987 | 54400 | 4.3934 |
| 0.9004 | 54500 | 4.257 |
| 0.9020 | 54600 | 4.2889 |
| 0.9037 | 54700 | 4.3432 |
| 0.9053 | 54800 | 4.2438 |
| 0.9070 | 54900 | 3.9952 |
| 0.9086 | 55000 | 4.1644 |
| 0.9103 | 55100 | 4.2173 |
| 0.9119 | 55200 | 4.4476 |
| 0.9136 | 55300 | 4.3303 |
| 0.9152 | 55400 | 4.2151 |
| 0.9169 | 55500 | 4.188 |
| 0.9185 | 55600 | 4.1958 |
| 0.9202 | 55700 | 4.305 |
| 0.9218 | 55800 | 3.8768 |
| 0.9235 | 55900 | 4.2899 |
| 0.9251 | 56000 | 4.2238 |
| 0.9268 | 56100 | 4.4298 |
| 0.9284 | 56200 | 4.325 |
| 0.9301 | 56300 | 4.5084 |
| 0.9318 | 56400 | 4.1923 |
| 0.9334 | 56500 | 4.258 |
| 0.9351 | 56600 | 3.9049 |
| 0.9367 | 56700 | 4.1926 |
| 0.9384 | 56800 | 3.7358 |
| 0.9400 | 56900 | 4.1174 |
| 0.9417 | 57000 | 4.0027 |
| 0.9433 | 57100 | 3.9343 |
| 0.9450 | 57200 | 4.1863 |
| 0.9466 | 57300 | 4.0725 |
| 0.9483 | 57400 | 4.4933 |
| 0.9499 | 57500 | 3.9865 |
| 0.9516 | 57600 | 3.9649 |
| 0.9532 | 57700 | 4.2387 |
| 0.9549 | 57800 | 4.2372 |
| 0.9565 | 57900 | 3.9313 |
| 0.9582 | 58000 | 4.2078 |
| 0.9598 | 58100 | 4.3646 |
| 0.9615 | 58200 | 4.0848 |
| 0.9631 | 58300 | 4.1224 |
| 0.9648 | 58400 | 4.2916 |
| 0.9664 | 58500 | 4.0903 |
| 0.9681 | 58600 | 3.7786 |
| 0.9698 | 58700 | 4.038 |
| 0.9714 | 58800 | 4.1145 |
| 0.9731 | 58900 | 4.0726 |
| 0.9747 | 59000 | 3.9669 |
| 0.9764 | 59100 | 4.1096 |
| 0.9780 | 59200 | 4.2828 |
| 0.9797 | 59300 | 4.2423 |
| 0.9813 | 59400 | 4.0985 |
| 0.9830 | 59500 | 4.6186 |
| 0.9846 | 59600 | 4.0591 |
| 0.9863 | 59700 | 3.7101 |
| 0.9879 | 59800 | 4.1663 |
| 0.9896 | 59900 | 3.7786 |
| 0.9912 | 60000 | 4.3359 |
| 0.9929 | 60100 | 4.1746 |
| 0.9945 | 60200 | 4.4696 |
| 0.9962 | 60300 | 4.1991 |
| 0.9978 | 60400 | 4.2198 |
| 0.9995 | 60500 | 4.4005 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 7
Model tree for youssefkhalil320/all-MiniLM-L6-v10-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2