ALMEV - GPT-OSS-20B Fine-tuned for MEV Detection

πŸš€ 20B Parameter LLM Specialized for Maximum Extractable Value

This is the full GPT-OSS-20B model (13GB) enhanced with LoRA adapters specifically trained for MEV detection on Solana blockchain.

Model Architecture

  • Base Model: GPT-OSS-20B (13GB quantized)
  • Total Parameters: 20 billion + 315K MEV adapter
  • Adapter Type: LoRA (Low-Rank Adaptation)
  • Training Method: Multi-task learning with regularization
  • Validation Accuracy: 99.3%

Training Details

  • Dataset: 700,805 Solana transactions
  • MEV Types Detected:
    • Arbitrage opportunities
    • Sandwich attacks
    • Liquidation events
    • Front-running patterns
  • Training Hardware: Apple M4 Max (MPS)
  • Optimization: AdamW with weight decay

Model Components

Component Description Size
Base Model GPT-OSS-20B (quantized) 13GB
MEV Adapter LoRA fine-tuning weights 1.2MB
Total Size Full model ~13GB

Usage

With Ollama

# Install the model
ollama pull zpphxd/almev

# Run interactive session
ollama run zpphxd/almev

Example Prompts

"Analyze this transaction for MEV opportunities: {tx_data}"
"What profit can be extracted from this arbitrage?"
"Identify sandwich attack patterns in these transactions"

Python Integration

import ollama

client = ollama.Client()
response = client.generate(
    model='zpphxd/almev',
    prompt='Analyze MEV opportunity: compute=500000, fee=20000'
)
print(response['response'])

Performance Metrics

Metric Value
MEV Detection Accuracy 99.3%
Inference Speed ~100ms per transaction
False Positive Rate <2%
Profit Prediction RΒ² 0.89

Capabilities

βœ… Real-time MEV Detection

  • Identifies profitable opportunities in <100ms
  • Supports high-frequency analysis

βœ… Multi-type Classification

  • Arbitrage detection with profit estimation
  • Sandwich attack pattern recognition
  • Liquidation opportunity spotting
  • Front-running vulnerability analysis

βœ… Profit Optimization

  • Estimates extractable value
  • Suggests optimal execution timing
  • Provides confidence scores

Files Included

  • adapter_model.bin - LoRA adapter weights (1.2MB)
  • config.json - Model configuration
  • README.md - This documentation
  • Modelfile - Ollama configuration

Installation & Setup

  1. For Ollama Users:

    ollama create almev -f Modelfile
    
  2. For Direct Usage:

    • Requires base model: gpt-oss:20b
    • Apply adapter weights using provided config

Citation

If you use this model in your research or applications:

@misc{almev2024,
  author = {zpphxd},
  title = {ALMEV: 20B Parameter LLM for MEV Detection},
  year = {2024},
  publisher = {Hugging Face},
  url = {https://huggingface.co/zpphxd/almev}
}

License

MIT License - Commercial use permitted

Disclaimer

This model is for research and educational purposes. Always verify MEV opportunities independently before executing trades.

Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Evaluation results