File size: 3,478 Bytes
a99240b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: mit
tags:
- mev
- blockchain
- solana
- llm
- finance
- gpt-oss
- 20b
- lora
datasets:
- custom
metrics:
- accuracy
model-index:
- name: almev
results:
- task:
type: text-generation
name: MEV Detection & Analysis
metrics:
- name: MEV Detection Accuracy
type: accuracy
value: 0.993
base_model: gpt-oss-20b
---
# ALMEV - GPT-OSS-20B Fine-tuned for MEV Detection
## 🚀 20B Parameter LLM Specialized for Maximum Extractable Value
This is the full GPT-OSS-20B model (13GB) enhanced with LoRA adapters specifically trained for MEV detection on Solana blockchain.
### Model Architecture
- **Base Model**: GPT-OSS-20B (13GB quantized)
- **Total Parameters**: 20 billion + 315K MEV adapter
- **Adapter Type**: LoRA (Low-Rank Adaptation)
- **Training Method**: Multi-task learning with regularization
- **Validation Accuracy**: 99.3%
### Training Details
- **Dataset**: 700,805 Solana transactions
- **MEV Types Detected**:
- Arbitrage opportunities
- Sandwich attacks
- Liquidation events
- Front-running patterns
- **Training Hardware**: Apple M4 Max (MPS)
- **Optimization**: AdamW with weight decay
### Model Components
| Component | Description | Size |
|-----------|-------------|------|
| Base Model | GPT-OSS-20B (quantized) | 13GB |
| MEV Adapter | LoRA fine-tuning weights | 1.2MB |
| Total Size | Full model | ~13GB |
### Usage
#### With Ollama
```bash
# Install the model
ollama pull zpphxd/almev
# Run interactive session
ollama run zpphxd/almev
```
#### Example Prompts
```
"Analyze this transaction for MEV opportunities: {tx_data}"
"What profit can be extracted from this arbitrage?"
"Identify sandwich attack patterns in these transactions"
```
#### Python Integration
```python
import ollama
client = ollama.Client()
response = client.generate(
model='zpphxd/almev',
prompt='Analyze MEV opportunity: compute=500000, fee=20000'
)
print(response['response'])
```
### Performance Metrics
| Metric | Value |
|--------|-------|
| MEV Detection Accuracy | 99.3% |
| Inference Speed | ~100ms per transaction |
| False Positive Rate | <2% |
| Profit Prediction R² | 0.89 |
### Capabilities
✅ **Real-time MEV Detection**
- Identifies profitable opportunities in <100ms
- Supports high-frequency analysis
✅ **Multi-type Classification**
- Arbitrage detection with profit estimation
- Sandwich attack pattern recognition
- Liquidation opportunity spotting
- Front-running vulnerability analysis
✅ **Profit Optimization**
- Estimates extractable value
- Suggests optimal execution timing
- Provides confidence scores
### Files Included
- `adapter_model.bin` - LoRA adapter weights (1.2MB)
- `config.json` - Model configuration
- `README.md` - This documentation
- `Modelfile` - Ollama configuration
### Installation & Setup
1. **For Ollama Users**:
```bash
ollama create almev -f Modelfile
```
2. **For Direct Usage**:
- Requires base model: gpt-oss:20b
- Apply adapter weights using provided config
### Citation
If you use this model in your research or applications:
```bibtex
@misc{almev2024,
author = {zpphxd},
title = {ALMEV: 20B Parameter LLM for MEV Detection},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/zpphxd/almev}
}
```
### License
MIT License - Commercial use permitted
### Disclaimer
This model is for research and educational purposes. Always verify MEV opportunities independently before executing trades. |