GRMP-IQA Model Card
Installation
pip install torch==1.12.0 torchvision==0.13.0
pip install -r requirements.txt
Quick Start
1. Meta-Learning Pre-training
python pretrain.py
2. Few-shot Fine-tuning
# 50-shot fine-tuning on CLIVE
python finetune.py --dataset clive --num_image 50 --lda 5.0
# Fine-tuning on KonIQ-10K
python finetune.py --dataset koniq --num_image 50 --lda 5.0
# Using pre-trained model
python finetune.py --dataset clive --num_image 50 --pretrained --lda 5.0
3. Python API Usage
import torch
from CLIP import clip
from finetune import CustomCLIP, load_clip_to_cpu
# Load pre-trained model
classnames = [['good', 'bad'], ['clear', 'unclear'], ['high quality', 'low quality']]
clip_model = load_clip_to_cpu('ViT-B/16').float()
model = CustomCLIP(classnames, clip_model)
# Load checkpoint
checkpoint = torch.load('path/to/checkpoint.pt')
model.load_state_dict(checkpoint, strict=False)
# Inference
model.eval()
with torch.no_grad():
# image: torch.Tensor [B, 3, 224, 224]
logits = model(image)
quality_score = torch.softmax(logits[:, :2], dim=-1)[:, 0]
Hugging Face Model Hub
Available Resources
Our model and associated resources are available on the Hugging Face Model Hub:
Repository: GRMP-IQA
Usage Example with Hugging Face
from huggingface_hub import hf_hub_download
import torch
import scipy.io as sio
# Download pre-trained model weights
model_path = hf_hub_download(
repo_id="zzhowe/GRMP-IQA",
filename="clive_50_prompt_lda_5.0.pt"
)
# Download dataset file
dataset_path = hf_hub_download(
repo_id="zzhowe/GRMP-IQA",
filename="LIVE_224.mat"
)
# Load model
model = torch.load(model_path, map_location='cpu')
# Load dataset
dataset = sio.loadmat(dataset_path)
Citation
If you use this model in your research, please cite:
@article{li2024boosting,
title={Few-Shot Image Quality Assessment via Adaptation of Vision-Language Models},
author={Li, Xudong and Huang, Zihao and Hu, Runze and Zhang, Yan and Cao, Liujuan and Ji, Rongrong},
journal={arXiv preprint arXiv:2409.05381},
year={2024}
}
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contact
For questions or issues, please contact:
- ๐ง Email: [email protected]
- ๐ง Email: [email protected]
Acknowledgments
- CLIP model from OpenAI
- PyTorch team for the deep learning framework
- All contributors to the IQA datasets used in training
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support