File size: 14,387 Bytes
01eabc2
 
 
 
 
 
b74107e
01eabc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74107e
01eabc2
 
b74107e
01eabc2
 
b74107e
01eabc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74107e
 
 
 
 
01eabc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74107e
 
 
01eabc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74107e
01eabc2
 
 
 
 
b74107e
01eabc2
b74107e
 
 
 
 
01eabc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74107e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01eabc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
---
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:82796
- loss:CrossEntropyLoss
base_model: deepvk/USER-bge-m3
pipeline_tag: text-classification
library_name: sentence-transformers
metrics:
- f1_macro
- f1_micro
- f1_weighted
model-index:
- name: CrossEncoder based on deepvk/USER-bge-m3
  results:
  - task:
      type: cross-encoder-softmax-accuracy
      name: Cross Encoder Softmax Accuracy
    dataset:
      name: softmax accuracy eval
      type: softmax_accuracy_eval
    metrics:
    - type: f1_macro
      value: 0.9771728083627488
      name: F1 Macro
    - type: f1_micro
      value: 0.9771739130434782
      name: F1 Micro
    - type: f1_weighted
      value: 0.9771740511285696
      name: F1 Weighted
---

# CrossEncoder based on deepvk/USER-bge-m3

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text pair classification.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) <!-- at revision 0cc6cfe48e260fb0474c753087a69369e88709ae -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 2 labels
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("Chimalpopoka/CrossEncoderRanker")
# Get scores for pairs of texts
pairs = [
    ['Панель №6 IgE (Сазан, карп, щука, судак, кефаль, ледяная рыба, пикша, осетр)', 'Сазан, (Cyprinus carpio), IgE, аллерген - e82. Метод: ИФА'],
    ['Определение антител класса M (IgM) к цитомегаловирусу (CytomegАlovirus) в крови', 'Бактериологическое исследование гнойного отделяемого: На аэробные и факультативно-анаэробные микроорганизмы. Метод: культуральный'],
    ['Исследования уровня бетта-изомеризованного C-концевого телопептида коллагена 1 типа (Beta-Cross laps) в крови', 'Глюкоза, в венозной крови'],
    ['Посев кала на диарогенные эшерихиозы (E. coli), закл., Кал', 'Коклюш (Bordetella pertussis): Антитела: IgG, (количественно). Метод: ИФА'],
    ['Ультразвуковое исследование поджелудочной железы (детям)', 'УЗИ поджелудочной железы, для детей'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5, 2)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Softmax Accuracy

* Dataset: `softmax_accuracy_eval`
* Evaluated with [<code>CESoftmaxAccuracyEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CESoftmaxAccuracyEvaluator)

| Metric       | Value      |
|:-------------|:-----------|
| **f1_macro** | **0.9772** |
| f1_micro     | 0.9772     |
| f1_weighted  | 0.9772     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 82,796 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                                     | sentence_1                                                                                     | label                                           |
  |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                         | string                                                                                         | int                                             |
  | details | <ul><li>min: 4 characters</li><li>mean: 66.18 characters</li><li>max: 504 characters</li></ul> | <ul><li>min: 3 characters</li><li>mean: 62.27 characters</li><li>max: 385 characters</li></ul> | <ul><li>0: ~50.60%</li><li>1: ~49.40%</li></ul> |
* Samples:
  | sentence_0                                                                                                                 | sentence_1                                                                                                                                     | label          |
  |:---------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Панель №6 IgE (Сазан, карп, щука, судак, кефаль, ледяная рыба, пикша, осетр)</code>                                  | <code>Сазан, (Cyprinus carpio), IgE, аллерген - e82. Метод: ИФА</code>                                                                         | <code>1</code> |
  | <code>Определение антител класса M (IgM) к цитомегаловирусу (CytomegАlovirus) в крови</code>                               | <code>Бактериологическое исследование гнойного отделяемого: На аэробные и факультативно-анаэробные микроорганизмы. Метод: культуральный</code> | <code>0</code> |
  | <code>Исследования уровня бетта-изомеризованного C-концевого телопептида коллагена 1 типа (Beta-Cross laps) в крови</code> | <code>Глюкоза, в венозной крови</code>                                                                                                         | <code>0</code> |
* Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `num_train_epochs`: 1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step  | Training Loss | softmax_accuracy_eval_f1_macro |
|:------:|:-----:|:-------------:|:------------------------------:|
| 0.0483 | 500   | 0.5573        | -                              |
| 0.0966 | 1000  | 0.2189        | -                              |
| 0.1449 | 1500  | 0.2144        | -                              |
| 0.1932 | 2000  | 0.1876        | 0.9683                         |
| 0.2415 | 2500  | 0.1812        | -                              |
| 0.2899 | 3000  | 0.1657        | -                              |
| 0.3382 | 3500  | 0.1796        | -                              |
| 0.3865 | 4000  | 0.1592        | 0.9702                         |
| 0.4348 | 4500  | 0.156         | -                              |
| 0.4831 | 5000  | 0.1491        | -                              |
| 0.5314 | 5500  | 0.1555        | -                              |
| 0.5797 | 6000  | 0.1216        | 0.9683                         |
| 0.6280 | 6500  | 0.1276        | -                              |
| 0.6763 | 7000  | 0.1305        | -                              |
| 0.7246 | 7500  | 0.1156        | -                              |
| 0.7729 | 8000  | 0.1197        | 0.9759                         |
| 0.8213 | 8500  | 0.1215        | -                              |
| 0.8696 | 9000  | 0.1065        | -                              |
| 0.9179 | 9500  | 0.0896        | -                              |
| 0.9662 | 10000 | 0.1135        | 0.9772                         |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.53.2
- PyTorch: 2.7.1+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->