Helion-V2.5-Rnd / inference /data_loader.py
Trouter-Library's picture
Create inference/data_loader.py
d6f46cf verified
#!/usr/bin/env python3
"""
Helion-2.5-Rnd Advanced Data Loader
Efficient data loading and preprocessing for inference
"""
import json
import logging
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Union
import numpy as np
from safetensors.torch import load_file
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SafeTensorsLoader:
"""Efficient SafeTensors model loading with validation"""
def __init__(self, model_path: str, device: str = "cuda"):
"""
Initialize SafeTensors loader
Args:
model_path: Path to model directory
device: Target device for loading
"""
self.model_path = Path(model_path)
self.device = device
self.index = self._load_index()
self.loaded_shards = {}
def _load_index(self) -> Dict:
"""Load SafeTensors index file"""
index_path = self.model_path / "model.safetensors.index.json"
if not index_path.exists():
raise FileNotFoundError(f"Index file not found: {index_path}")
with open(index_path, 'r') as f:
index = json.load(f)
logger.info(f"Loaded index with {len(index.get('weight_map', {}))} weight mappings")
return index
def get_shard_path(self, shard_name: str) -> Path:
"""Get full path to shard file"""
return self.model_path / shard_name
def load_shard(self, shard_name: str, lazy: bool = False) -> Dict:
"""
Load a single SafeTensors shard
Args:
shard_name: Name of shard file
lazy: Whether to use lazy loading
Returns:
Dictionary of tensors
"""
if shard_name in self.loaded_shards:
logger.debug(f"Using cached shard: {shard_name}")
return self.loaded_shards[shard_name]
shard_path = self.get_shard_path(shard_name)
if not shard_path.exists():
raise FileNotFoundError(f"Shard not found: {shard_path}")
logger.info(f"Loading shard: {shard_name}")
try:
tensors = load_file(str(shard_path), device=self.device)
if not lazy:
self.loaded_shards[shard_name] = tensors
return tensors
except Exception as e:
logger.error(f"Failed to load shard {shard_name}: {e}")
raise
def load_weight(self, weight_name: str) -> Any:
"""
Load a specific weight by name
Args:
weight_name: Name of the weight tensor
Returns:
Weight tensor
"""
weight_map = self.index.get('weight_map', {})
if weight_name not in weight_map:
raise KeyError(f"Weight not found in index: {weight_name}")
shard_name = weight_map[weight_name]
tensors = self.load_shard(shard_name)
return tensors[weight_name]
def load_all_weights(self, progress_callback=None) -> Dict:
"""
Load all model weights
Args:
progress_callback: Optional callback for progress updates
Returns:
Dictionary of all weights
"""
all_weights = {}
weight_map = self.index.get('weight_map', {})
unique_shards = set(weight_map.values())
logger.info(f"Loading {len(unique_shards)} shards...")
for i, shard_name in enumerate(sorted(unique_shards)):
tensors = self.load_shard(shard_name)
all_weights.update(tensors)
if progress_callback:
progress_callback(i + 1, len(unique_shards))
logger.info(f"Loaded {len(all_weights)} weight tensors")
return all_weights
def validate_checksums(self) -> Dict[str, bool]:
"""
Validate SHA256 checksums of all shards
Returns:
Dictionary mapping shard names to validation status
"""
import hashlib
results = {}
file_metadata = self.index.get('file_metadata', {})
for shard_name, metadata in file_metadata.items():
expected_hash = metadata.get('sha256')
if not expected_hash:
results[shard_name] = None
continue
shard_path = self.get_shard_path(shard_name)
if not shard_path.exists():
results[shard_name] = False
continue
sha256 = hashlib.sha256()
with open(shard_path, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b''):
sha256.update(chunk)
actual_hash = sha256.hexdigest()
results[shard_name] = (actual_hash == expected_hash)
status = "✓" if results[shard_name] else "✗"
logger.info(f"{status} {shard_name}")
return results
def get_model_info(self) -> Dict:
"""Get model information from index"""
metadata = self.index.get('metadata', {})
return {
'model_name': metadata.get('model_name', 'Unknown'),
'version': metadata.get('version', 'Unknown'),
'total_size_bytes': metadata.get('total_size', 0),
'total_size_gb': metadata.get('total_size', 0) / (1024**3),
'format': metadata.get('format', 'safetensors'),
'precision': metadata.get('precision', 'unknown'),
'total_shards': metadata.get('total_shards', 0),
'parameters': metadata.get('parameters', 'Unknown')
}
def clear_cache(self):
"""Clear loaded shard cache"""
self.loaded_shards.clear()
logger.info("Cleared shard cache")
class DatasetPreprocessor:
"""Preprocess datasets for inference"""
def __init__(self, tokenizer=None, max_length: int = 131072):
"""
Initialize preprocessor
Args:
tokenizer: Tokenizer instance
max_length: Maximum sequence length
"""
self.tokenizer = tokenizer
self.max_length = max_length
def preprocess_text(self, text: str) -> str:
"""
Preprocess raw text
Args:
text: Input text
Returns:
Preprocessed text
"""
# Remove excessive whitespace
text = ' '.join(text.split())
# Remove control characters
text = ''.join(char for char in text if ord(char) >= 32 or char in '\n\t')
return text.strip()
def preprocess_chat_messages(self, messages: List[Dict[str, str]]) -> str:
"""
Preprocess chat messages into prompt format
Args:
messages: List of message dictionaries
Returns:
Formatted prompt string
"""
formatted = ""
for msg in messages:
role = msg.get('role', 'user')
content = self.preprocess_text(msg.get('content', ''))
formatted += f"<|im_start|>{role}\n{content}<|im_end|>\n"
formatted += "<|im_start|>assistant\n"
return formatted
def batch_preprocess(
self,
texts: List[str],
add_special_tokens: bool = True,
padding: bool = True,
truncation: bool = True
) -> Dict:
"""
Batch preprocess texts
Args:
texts: List of input texts
add_special_tokens: Whether to add special tokens
padding: Whether to pad sequences
truncation: Whether to truncate sequences
Returns:
Batch of preprocessed data
"""
if self.tokenizer is None:
raise ValueError("Tokenizer not initialized")
processed_texts = [self.preprocess_text(text) for text in texts]
encodings = self.tokenizer(
processed_texts,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=self.max_length,
return_tensors='pt'
)
return encodings
def stream_process_file(
self,
file_path: str,
batch_size: int = 32
) -> Iterator[Dict]:
"""
Stream process large files in batches
Args:
file_path: Path to input file
batch_size: Number of samples per batch
Yields:
Batches of preprocessed data
"""
path = Path(file_path)
if path.suffix == '.jsonl':
with open(path, 'r') as f:
batch = []
for line in f:
try:
data = json.loads(line)
text = data.get('text', '')
batch.append(text)
if len(batch) >= batch_size:
yield self.batch_preprocess(batch)
batch = []
except json.JSONDecodeError:
logger.warning(f"Skipping invalid JSON line")
if batch:
yield self.batch_preprocess(batch)
elif path.suffix == '.txt':
with open(path, 'r') as f:
batch = []
for line in f:
batch.append(line.strip())
if len(batch) >= batch_size:
yield self.batch_preprocess(batch)
batch = []
if batch:
yield self.batch_preprocess(batch)
else:
raise ValueError(f"Unsupported file format: {path.suffix}")
class InferenceDataCollator:
"""Collate data for efficient batch inference"""
def __init__(self, pad_token_id: int = 128001):
"""
Initialize data collator
Args:
pad_token_id: ID for padding token
"""
self.pad_token_id = pad_token_id
def __call__(self, features: List[Dict]) -> Dict:
"""
Collate features into batch
Args:
features: List of feature dictionaries
Returns:
Batched features
"""
if not features:
return {}
# Get maximum sequence length in batch
max_length = max(len(f['input_ids']) for f in features)
batch = {
'input_ids': [],
'attention_mask': []
}
for feature in features:
input_ids = feature['input_ids']
attention_mask = feature.get('attention_mask', [1] * len(input_ids))
# Pad to max length
padding_length = max_length - len(input_ids)
input_ids = input_ids + [self.pad_token_id] * padding_length
attention_mask = attention_mask + [0] * padding_length
batch['input_ids'].append(input_ids)
batch['attention_mask'].append(attention_mask)
# Convert to numpy arrays
batch['input_ids'] = np.array(batch['input_ids'], dtype=np.int64)
batch['attention_mask'] = np.array(batch['attention_mask'], dtype=np.int64)
return batch
def dynamic_padding(self, features: List[Dict], padding_multiple: int = 8) -> Dict:
"""
Apply dynamic padding optimized for hardware
Args:
features: List of feature dictionaries
padding_multiple: Pad to multiple of this value
Returns:
Batched features with optimal padding
"""
if not features:
return {}
max_length = max(len(f['input_ids']) for f in features)
# Round up to nearest multiple
padded_length = ((max_length + padding_multiple - 1) // padding_multiple) * padding_multiple
batch = {
'input_ids': [],
'attention_mask': []
}
for feature in features:
input_ids = feature['input_ids']
attention_mask = feature.get('attention_mask', [1] * len(input_ids))
padding_length = padded_length - len(input_ids)
input_ids = input_ids + [self.pad_token_id] * padding_length
attention_mask = attention_mask + [0] * padding_length
batch['input_ids'].append(input_ids)
batch['attention_mask'].append(attention_mask)
batch['input_ids'] = np.array(batch['input_ids'], dtype=np.int64)
batch['attention_mask'] = np.array(batch['attention_mask'], dtype=np.int64)
return batch
class CachedDataLoader:
"""Data loader with caching for repeated inference"""
def __init__(self, cache_dir: str = "./cache"):
"""
Initialize cached data loader
Args:
cache_dir: Directory for cache storage
"""
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
def get_cache_key(self, text: str) -> str:
"""Generate cache key from text"""
import hashlib
return hashlib.sha256(text.encode()).hexdigest()
def load_from_cache(self, cache_key: str) -> Optional[Any]:
"""
Load data from cache
Args:
cache_key: Cache identifier
Returns:
Cached data or None
"""
cache_path = self.cache_dir / f"{cache_key}.json"
if not cache_path.exists():
return None
try:
with open(cache_path, 'r') as f:
return json.load(f)
except Exception as e:
logger.warning(f"Failed to load from cache: {e}")
return None
def save_to_cache(self, cache_key: str, data: Any):
"""
Save data to cache
Args:
cache_key: Cache identifier
data: Data to cache
"""
cache_path = self.cache_dir / f"{cache_key}.json"
try:
with open(cache_path, 'w') as f:
json.dump(data, f)
except Exception as e:
logger.warning(f"Failed to save to cache: {e}")
def clear_cache(self):
"""Clear all cached data"""
import shutil
shutil.rmtree(self.cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
logger.info("Cache cleared")
def main():
"""Example usage"""
# SafeTensors loading
loader = SafeTensorsLoader("./models/helion")
# Get model info
info = loader.get_model_info()
print(f"Model: {info['model_name']}")
print(f"Size: {info['total_size_gb']:.2f} GB")
print(f"Shards: {info['total_shards']}")
# Validate checksums
print("\nValidating checksums...")
results = loader.validate_checksums()
valid_count = sum(1 for v in results.values() if v)
print(f"Valid: {valid_count}/{len(results)}")
if __name__ == "__main__":
main()