|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- dense |
|
|
- generated_from_trainer |
|
|
- dataset_size:790823 |
|
|
- loss:MultipleNegativesSymmetricRankingLoss |
|
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
|
widget: |
|
|
- source_sentence: essence multi task concealer 15 natural nude |
|
|
sentences: |
|
|
- adidas men shower gel 3 in 1 |
|
|
- ' essence multi task concealer' |
|
|
- face make-up |
|
|
- source_sentence: chillax fluffy beanbag |
|
|
sentences: |
|
|
- ' fluffy beanbag' |
|
|
- living room furniture |
|
|
- 60410 fire rescue motorcycle v |
|
|
- source_sentence: must kindergarten backpack mermazing 2 cases |
|
|
sentences: |
|
|
- bag |
|
|
- school supplies |
|
|
- sage navy blue |
|
|
- source_sentence: yplus colored pencils 18 colors with plastic sharpener rainbow |
|
|
pc 110440 px 1208 |
|
|
sentences: |
|
|
- pencil |
|
|
- ' pencils ' |
|
|
- canvas frame 100% cotton 420 gsm 5070 cm m b5312 |
|
|
- source_sentence: y earrings |
|
|
sentences: |
|
|
- marbella |
|
|
- gold earrings |
|
|
- earring |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy |
|
|
model-index: |
|
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
results: |
|
|
- task: |
|
|
type: triplet |
|
|
name: Triplet |
|
|
dataset: |
|
|
name: Unknown |
|
|
type: unknown |
|
|
metrics: |
|
|
- type: cosine_accuracy |
|
|
value: 0.9696077108383179 |
|
|
name: Cosine Accuracy |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf --> |
|
|
- **Maximum Sequence Length:** 256 tokens |
|
|
- **Output Dimensionality:** 384 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'}) |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'y earrings', |
|
|
'gold earrings', |
|
|
'marbella', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 384] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities) |
|
|
# tensor([[1.0000, 0.8991, 0.2448], |
|
|
# [0.8991, 1.0000, 0.2740], |
|
|
# [0.2448, 0.2740, 1.0000]]) |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Triplet |
|
|
|
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| **cosine_accuracy** | **0.9696** | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 790,823 training samples |
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>itemCategory</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | itemCategory | |
|
|
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 10.03 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.65 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.97 tokens</li><li>max: 11 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | itemCategory | |
|
|
|:-----------------------------------------------------------------------------|:-----------------------------|:-------------------------| |
|
|
| <code>jake jelly mania ys max</code> | <code>jake candy</code> | <code>sweet</code> | |
|
|
| <code>own crisp</code> | <code>sweet</code> | <code>sweet</code> | |
|
|
| <code>pencil case zipper surf floral petrol denim polyester pm 19454</code> | <code>office supplies</code> | <code>pencil case</code> | |
|
|
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "cos_sim", |
|
|
"gather_across_devices": false |
|
|
} |
|
|
``` |
|
|
|
|
|
### Evaluation Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 9,509 evaluation samples |
|
|
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, and <code>itemCategory</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | negative | itemCategory | |
|
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| |
|
|
| type | string | string | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 9.63 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.43 tokens</li><li>max: 150 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.48 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.86 tokens</li><li>max: 9 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | negative | itemCategory | |
|
|
|:---------------------------------------------------------------------|:-------------------------------------|:------------------------------------|:------------------------------------| |
|
|
| <code>pilot mechanical pencil progrex h-127 - 0.7 mm</code> | <code> progrex pencil </code> | <code>jojo's journal</code> | <code>pencil</code> | |
|
|
| <code>superior drawing marker -pen - set of 12 colors - 2 nib</code> | <code>superior drawing marker</code> | <code>timed feeding tray</code> | <code>marker</code> | |
|
|
| <code>first person singular author: haruki murakami</code> | <code> book</code> | <code>sushi chicken shawerma</code> | <code>literature and fiction</code> | |
|
|
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "cos_sim", |
|
|
"gather_across_devices": false |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 256 |
|
|
- `per_device_eval_batch_size`: 256 |
|
|
- `weight_decay`: 0.001 |
|
|
- `num_train_epochs`: 4 |
|
|
- `warmup_ratio`: 0.2 |
|
|
- `fp16`: True |
|
|
- `dataloader_num_workers`: 1 |
|
|
- `dataloader_prefetch_factor`: 2 |
|
|
- `dataloader_persistent_workers`: True |
|
|
- `push_to_hub`: True |
|
|
- `hub_model_id`: LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine |
|
|
- `hub_strategy`: all_checkpoints |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 256 |
|
|
- `per_device_eval_batch_size`: 256 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.001 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 4 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.2 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 1 |
|
|
- `dataloader_prefetch_factor`: 2 |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: True |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: True |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine |
|
|
- `hub_strategy`: all_checkpoints |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `hub_revision`: None |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `liger_kernel_config`: None |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
- `router_mapping`: {} |
|
|
- `learning_rate_mapping`: {} |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | |
|
|
|:------:|:----:|:-------------:|:---------------:|:---------------:| |
|
|
| 0.0003 | 1 | 3.5189 | - | - | |
|
|
| 0.3236 | 1000 | 2.5841 | 0.5323 | 0.9526 | |
|
|
| 0.6472 | 2000 | 1.5199 | 0.4736 | 0.9624 | |
|
|
| 0.9709 | 3000 | 1.0615 | 0.4600 | 0.9608 | |
|
|
| 1.2943 | 4000 | 1.1183 | 0.4375 | 0.9660 | |
|
|
| 1.6177 | 5000 | 1.0372 | 0.4423 | 0.9657 | |
|
|
| 1.9411 | 6000 | 0.9562 | 0.4302 | 0.9676 | |
|
|
| 2.2646 | 7000 | 0.8554 | 0.4332 | 0.9668 | |
|
|
| 2.5880 | 8000 | 0.812 | 0.4287 | 0.9671 | |
|
|
| 2.9114 | 9000 | 0.7919 | 0.4297 | 0.9696 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.13 |
|
|
- Sentence Transformers: 5.1.2 |
|
|
- Transformers: 4.53.3 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.9.0 |
|
|
- Datasets: 4.4.1 |
|
|
- Tokenizers: 0.21.2 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |