LamaDiab's picture
Training in progress, epoch 3, checkpoint
fba6a10 verified
|
raw
history blame
16.2 kB
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:790823
- loss:MultipleNegativesSymmetricRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: essence multi task concealer 15 natural nude
sentences:
- adidas men shower gel 3 in 1
- ' essence multi task concealer'
- face make-up
- source_sentence: chillax fluffy beanbag
sentences:
- ' fluffy beanbag'
- living room furniture
- 60410 fire rescue motorcycle v
- source_sentence: must kindergarten backpack mermazing 2 cases
sentences:
- bag
- school supplies
- sage navy blue
- source_sentence: yplus colored pencils 18 colors with plastic sharpener rainbow
pc 110440 px 1208
sentences:
- pencil
- ' pencils '
- canvas frame 100% cotton 420 gsm 5070 cm m b5312
- source_sentence: y earrings
sentences:
- marbella
- gold earrings
- earring
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9696077108383179
name: Cosine Accuracy
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine")
# Run inference
sentences = [
'y earrings',
'gold earrings',
'marbella',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8991, 0.2448],
# [0.8991, 1.0000, 0.2740],
# [0.2448, 0.2740, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9696** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 790,823 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>itemCategory</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | itemCategory |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 10.03 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.65 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.97 tokens</li><li>max: 11 tokens</li></ul> |
* Samples:
| anchor | positive | itemCategory |
|:-----------------------------------------------------------------------------|:-----------------------------|:-------------------------|
| <code>jake jelly mania ys max</code> | <code>jake candy</code> | <code>sweet</code> |
| <code>own crisp</code> | <code>sweet</code> | <code>sweet</code> |
| <code>pencil case zipper surf floral petrol denim polyester pm 19454</code> | <code>office supplies</code> | <code>pencil case</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 9,509 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, and <code>itemCategory</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | itemCategory |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 9.63 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.43 tokens</li><li>max: 150 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.48 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.86 tokens</li><li>max: 9 tokens</li></ul> |
* Samples:
| anchor | positive | negative | itemCategory |
|:---------------------------------------------------------------------|:-------------------------------------|:------------------------------------|:------------------------------------|
| <code>pilot mechanical pencil progrex h-127 - 0.7 mm</code> | <code> progrex pencil </code> | <code>jojo's journal</code> | <code>pencil</code> |
| <code>superior drawing marker -pen - set of 12 colors - 2 nib</code> | <code>superior drawing marker</code> | <code>timed feeding tray</code> | <code>marker</code> |
| <code>first person singular author: haruki murakami</code> | <code> book</code> | <code>sushi chicken shawerma</code> | <code>literature and fiction</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `weight_decay`: 0.001
- `num_train_epochs`: 4
- `warmup_ratio`: 0.2
- `fp16`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 2
- `dataloader_persistent_workers`: True
- `push_to_hub`: True
- `hub_model_id`: LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine
- `hub_strategy`: all_checkpoints
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 2
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: True
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
|:------:|:----:|:-------------:|:---------------:|:---------------:|
| 0.0003 | 1 | 3.5189 | - | - |
| 0.3236 | 1000 | 2.5841 | 0.5323 | 0.9526 |
| 0.6472 | 2000 | 1.5199 | 0.4736 | 0.9624 |
| 0.9709 | 3000 | 1.0615 | 0.4600 | 0.9608 |
| 1.2943 | 4000 | 1.1183 | 0.4375 | 0.9660 |
| 1.6177 | 5000 | 1.0372 | 0.4423 | 0.9657 |
| 1.9411 | 6000 | 0.9562 | 0.4302 | 0.9676 |
| 2.2646 | 7000 | 0.8554 | 0.4332 | 0.9668 |
| 2.5880 | 8000 | 0.812 | 0.4287 | 0.9671 |
| 2.9114 | 9000 | 0.7919 | 0.4297 | 0.9696 |
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.2
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->