ao-ot1231231's picture
Add new SentenceTransformer model
b2b6483 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:5822
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
  - source_sentence: >-
      court opined that the Board exercised “substantial independent authority”
      and thus was also a 

      FOIA “agency” under Soucie’s functional test.  Id. at 584–85. 

      This Court’s previous opinion followed Energy Research’s analytical
      steps.  As with the 

      Board, Congress made the Commission an “establishment in the executive
      branch,” one of the
    sentences:
      - How does the Court describe the CIA's work?
      - Which test was used to determine that the Board was a FOIA 'agency'?
      - What is the estimated value range of the contract in question?
  - source_sentence: >-
      • The Court grants in part and denies in part summary judgment to the CIA
      on Count Three 

      in No. 11-445.  The Court denies summary judgment to the CIA with respect
      to (1) the 

      CIA’s withholding of responsive information under FOIA Exemption 3 and the
      CIA Act, 

      50 U.S.C. § 403g, see supra Part III.H.; and (2) the CIA’s withholding of
      responsive 

      161
    sentences:
      - Under what condition can the parties file renewed motions?
      - >-
        What legislation is referenced in connection with the CIA's withholding
        of information?
      - What does the Government not dispute regarding § 340.403?
  - source_sentence: >-
      for a specific procurement through separate joint ventures with different
      protégés.”  Id.  The SBA 

      underscored this purpose by highlighting that in acquiring a second
      protégé, the mentor “has 

      already assured SBA that the two protégés would not be competitors.  If
      the two mentor-protégé 

      relationships were approved in the same [North American Industry
      Classification System] code,
    sentences:
      - What is the title of section D?
      - What does the mentor assure the SBA about the two protégés?
      - Where can specific details about the plaintiff's opposition be found?
  - source_sentence: >-
      moving party has shown a privacy interest outweighing the public’s
      interest in open judicial 

      proceedings. Doe, 282 Ill. App. 3d at 1088. The standard of review for the
      trial court’s 

      determination stands, absent an abuse of discretion. Northwestern Memorial
      Hospital, 2014 IL 

      App (1st) 140212,  36. 

       51
    sentences:
      - >-
        What is mentioned as the standard of review for the trial court’s
        determination?
      - When did the plaintiff file a motion?
      - What does recognizing assignments of FOIA request rights result in?
  - source_sentence: >-
      Williams Decl. Exs. D–I, ECF No. 53-1.  In Counts Five and Six of No.
      11-445, the plaintiff 

      challenges the DIA’s and the ODNI’s withholding determinations,
      respectively, made under 

      10 
       
      FOIA Exemptions 1, 2, 3, 5, and 6.  See 445 FAC ¶¶ 38–54; Defs.’ First 445
      Mem. at 4–6; Pl.’s 

      First 445 Opp’n at 6, 17–22, 24.7 

      B. 

      2010 FOIA Requests 

      1.
    sentences:
      - >-
        What did the forum a quo determine it would do after the parties exposed
        their positions?
      - Under which FOIA exemptions are the withholding determinations made?
      - How many remaining claims does the plaintiff have?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: ModernBERT Embed base Legal Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.5440494590417311
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.58887171561051
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6877897990726429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7619783616692427
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5440494590417311
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.5151983513652756
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.3984544049459042
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.23616692426584238
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.19448737764039153
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5047655847501289
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6329211746522411
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7434312210200927
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6499814474424818
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5917923995976541
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6349937117655203
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.5316846986089645
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5826893353941267
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6893353941267388
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7619783616692427
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5316846986089645
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.5100463678516228
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.3993817619783616
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.23817619783616692
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.18663060278207108
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.49613601236476046
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6312467800103039
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7480680061823802
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6470109167633091
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.583873064939525
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6280912185452766
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.5069551777434312
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5486862442040186
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.652241112828439
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7357032457496137
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5069551777434312
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.4863472436888202
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.37712519319938176
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.2282843894899536
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.17362184441009787
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4719216898505925
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5965996908809892
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7174137042761463
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6158619070528558
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.555434115944162
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6000656985096435
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.4327666151468315
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.47449768160741884
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5703245749613601
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6646058732612056
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4327666151468315
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.41576506955177744
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.3316846986089645
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.20819165378670787
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.148634724368882
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3999227202472952
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5211231324059763
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6510819165378671
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5456391631379686
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.48163317877382794
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5298973764645131
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.3323029366306028
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.37094281298299847
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.44513137557959814
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5239567233384853
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3323029366306028
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32096857290056674
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.25718701700154567
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.16306027820710975
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11669242658423493
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3104070066975786
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.4031427099433281
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5090159711488923
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.42514271233181616
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.37330168543460646
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4208075319076454
            name: Cosine Map@100

ModernBERT Embed base Legal Matryoshka

This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/modernbert-embed-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ao-ot1231231/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
    'Williams Decl. Exs. D–I, ECF No. 53-1.  In Counts Five and Six of No. 11-445, the plaintiff \nchallenges the DIA’s and the ODNI’s withholding determinations, respectively, made under \n10 \n \nFOIA Exemptions 1, 2, 3, 5, and 6.  See 445 FAC ¶¶ 38–54; Defs.’ First 445 Mem. at 4–6; Pl.’s \nFirst 445 Opp’n at 6, 17–22, 24.7 \nB. \n2010 FOIA Requests \n1.',
    'Under which FOIA exemptions are the withholding determinations made?',
    'What did the forum a quo determine it would do after the parties exposed their positions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.4481, 0.1215],
#         [0.4481, 1.0000, 0.1083],
#         [0.1215, 0.1083, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.544
cosine_accuracy@3 0.5889
cosine_accuracy@5 0.6878
cosine_accuracy@10 0.762
cosine_precision@1 0.544
cosine_precision@3 0.5152
cosine_precision@5 0.3985
cosine_precision@10 0.2362
cosine_recall@1 0.1945
cosine_recall@3 0.5048
cosine_recall@5 0.6329
cosine_recall@10 0.7434
cosine_ndcg@10 0.65
cosine_mrr@10 0.5918
cosine_map@100 0.635

Information Retrieval

Metric Value
cosine_accuracy@1 0.5317
cosine_accuracy@3 0.5827
cosine_accuracy@5 0.6893
cosine_accuracy@10 0.762
cosine_precision@1 0.5317
cosine_precision@3 0.51
cosine_precision@5 0.3994
cosine_precision@10 0.2382
cosine_recall@1 0.1866
cosine_recall@3 0.4961
cosine_recall@5 0.6312
cosine_recall@10 0.7481
cosine_ndcg@10 0.647
cosine_mrr@10 0.5839
cosine_map@100 0.6281

Information Retrieval

Metric Value
cosine_accuracy@1 0.507
cosine_accuracy@3 0.5487
cosine_accuracy@5 0.6522
cosine_accuracy@10 0.7357
cosine_precision@1 0.507
cosine_precision@3 0.4863
cosine_precision@5 0.3771
cosine_precision@10 0.2283
cosine_recall@1 0.1736
cosine_recall@3 0.4719
cosine_recall@5 0.5966
cosine_recall@10 0.7174
cosine_ndcg@10 0.6159
cosine_mrr@10 0.5554
cosine_map@100 0.6001

Information Retrieval

Metric Value
cosine_accuracy@1 0.4328
cosine_accuracy@3 0.4745
cosine_accuracy@5 0.5703
cosine_accuracy@10 0.6646
cosine_precision@1 0.4328
cosine_precision@3 0.4158
cosine_precision@5 0.3317
cosine_precision@10 0.2082
cosine_recall@1 0.1486
cosine_recall@3 0.3999
cosine_recall@5 0.5211
cosine_recall@10 0.6511
cosine_ndcg@10 0.5456
cosine_mrr@10 0.4816
cosine_map@100 0.5299

Information Retrieval

Metric Value
cosine_accuracy@1 0.3323
cosine_accuracy@3 0.3709
cosine_accuracy@5 0.4451
cosine_accuracy@10 0.524
cosine_precision@1 0.3323
cosine_precision@3 0.321
cosine_precision@5 0.2572
cosine_precision@10 0.1631
cosine_recall@1 0.1167
cosine_recall@3 0.3104
cosine_recall@5 0.4031
cosine_recall@10 0.509
cosine_ndcg@10 0.4251
cosine_mrr@10 0.3733
cosine_map@100 0.4208

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 5,822 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 28 tokens
    • mean: 97.25 tokens
    • max: 170 tokens
    • min: 7 tokens
    • mean: 16.57 tokens
    • max: 49 tokens
  • Samples:
    positive anchor
    personnel.” See id. The answer to that question remains unclear, and the Court need not decide
    113

    it here.52 It suffices to conclude that the names withheld by the CIA are at least arguably
    protected from disclosure under the interpretation of § 403g announced in Halperin, and thus
    withholding those names does not rise to the level of “general sloppiness” that would caution
    Under which interpretation are the names at least arguably protected from disclosure?
    last of these motions became ripe on June 11, 2013. Additionally, on November 21, 2012, the
    plaintiff filed a motion for leave to file a second amended complaint in No. 11-445, and on
    January 11, 2013, the plaintiff filed a motion for sanctions in No. 11-443. Thus, currently
    pending before the Court in these related actions are ten motions: eight motions or cross-motions
    28
    When did the last of the motions become ripe?
    the parties to confer, once this report is final, and submit any remaining areas of
    disagreement on the scope of the inspection to the Court.
    33 D.I. 1, Ex. 2.
    34 Id.
    Senetas Corporation, Ltd. v. DeepRadiology Corporation
    C.A. No. 2019-0170-PWG
    July 30, 2019

    9

    accurate financial records; failed to keep the Board reasonably informed about
    What is the case number for Senetas Corporation, Ltd. v. DeepRadiology Corporation?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.8791 10 5.7061 - - - - -
1.0 12 - 0.6031 0.5863 0.5621 0.4889 0.3463
1.7033 20 2.6671 - - - - -
2.0 24 - 0.6410 0.6341 0.6047 0.5248 0.4071
2.5275 30 2.0092 - - - - -
3.0 36 - 0.6489 0.6465 0.6154 0.5391 0.4261
3.3516 40 1.6698 - - - - -
4.0 48 - 0.65 0.647 0.6159 0.5456 0.4251
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.3
  • PyTorch: 2.9.1+cu128
  • Accelerate: 1.12.0
  • Datasets: 4.4.1
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}