GROOT Condiment Handover Model - Step 2000
Model Card Summary
- Checkpoint: Step 2000 (Final checkpoint)
- Base Model: nvidia/GR00T-N1.5-3B
- Task: Condiment handover on ASGARD so101_follower robot
- Training Status: Completed successfully
- Final Loss: ~0.006
Model Details
Model Architecture
This is a fine-tuned NVIDIA GR00T N1.5-3B model specifically trained for condiment handover tasks.
- Model Type: GROOT (Generalist Robot 00 Technology)
- Policy Type: GR00T N1.5-3B
- Robot Embodiment: asgard_so101 (single-arm 6 degrees of freedom)
- Action Dimensions: 6 (joint positions + gripper)
- Observation: Dual camera RGB (640×480×3 each)
Training Components
Frozen (Not Trained):
- ❌ LLM (
tune_llm=false) - Language model kept frozen - ❌ Vision Encoder (
tune_visual=false) - Visual features frozen
Trainable Components:
- ✅ Diffusion Transformer (
tune_diffusion_model=true) - Action generation - ✅ Projector (
tune_projector=true) - Vision-language to action mapping
Training Strategy
- Approach: Full fine-tuning (no LoRA)
- Rationale: 4× H100 GPUs with 320GB total VRAM allows full parameter updates
- Precision: bf16 (mixed precision training)
Training Details
Dataset Information
| Parameter | Value | Description |
|---|---|---|
| Dataset Repository | asgard-robot/asgard_training_data_condiment | Hugging Face dataset |
| Dataset Version | v3.0 | LeRobot format tag |
| Total Episodes | 40 | Number of demonstrations |
| Total Frames | 31,522 | Total training samples |
| Avg Frames/Episode | ~788 | Average trajectory length |
| Episode Duration | ~26 seconds | At 30 FPS |
| Robot Type | so101_follower | Single-arm 6 DOF |
| Task | Condiment handover | Primary objective |
| Format | LeRobot v3.0 | Parquet + MP4 videos (AV1 codec) |
Training Hyperparameters
| Parameter | Value | Justification |
|---|---|---|
| Total Training Steps | 2,000 | Full training cycle |
| Number of Epochs | ~32 | Effective epochs (31,522 frames ÷ 512 batch) |
| Checkpoints Saved | 5 | Steps: 400, 800, 1200, 1600, 2000 |
| Learning Rate | 1e-4 | GROOT recommended value |
| Weight Decay | 1e-5 | L2 regularization |
| Gradient Clip Norm | 1.0 | Training stability |
| Warmup Ratio | 0.05 | Gradual learning rate ramp |
| Batch Size (per GPU) | 128 | Maximum VRAM utilization |
| Effective Batch Size | 512 | 128 × 4 GPUs |
| Num Workers | 16 | DataLoader parallel loading |
| Video Backend | torchcodec | AV1 codec decoder |
| Mixed Precision | bf16 | Memory efficient training |
Hardware Configuration
| Component | Specification | Utilization |
|---|---|---|
| GPUs | 4× NVIDIA H100 PCIe | All 4 GPUs used |
| VRAM per GPU | 80GB | ~79.65GB usable |
| Total VRAM | 320GB | Peak usage: ~60-70GB per GPU |
| CPUs | 124 AMD EPYC 9554 (64-Core) | Data loading |
| System RAM | 708GB | Adequate for data loading |
| Storage | 1.5TB ephemeral | Checkpoint storage |
Usage
Load Model
from lerobot import Policy
policy = Policy.from_pretrained("asgard-robot/groot-condiment-handover")
Run Inference
# The model expects observations with:
# - observation.images.wrist1: RGB camera (640×480×3)
# - observation.images.realsense: RGB camera (640×480×3)
# - observation.state: 6D joint positions
action = policy(observation)
# Returns: 6D action space (joint positions + gripper)
Action Space
The model outputs actions for 6 degrees of freedom:
shoulder_pan.posshoulder_lift.poselbow_flex.poswrist_flex.poswrist_roll.posgripper.pos
Citation
@software{groot_condiment_model_2024,
author = {ASGARD Team},
title = {GROOT Condiment Handover Model - Step 2000},
model = {asgard-robot/groot-condiment-handover},
year = {2024},
month = {October},
checkpoint = {2000},
base_model = {nvidia/GR00T-N1.5-3B},
dataset = {asgard-robot/asgard_training_data_condiment},
training_hardware = {4× NVIDIA H100 PCIe GPUs}
}
Acknowledgments
- Base Model: NVIDIA GR00T N1.5-3B
- Framework: LeRobot (ASGARD teleop control branch)
- Dataset: ASGARD Robot Datasets
- Hardware: Shadeform H100 Multi-GPU Cluster
- Downloads last month
- -
Model tree for asgard-robot/groot-condiment-handover
Base model
nvidia/GR00T-N1.5-3BDataset used to train asgard-robot/groot-condiment-handover
Evaluation results
- training_lossself-reported~0.006
- loss_reduction_percentself-reported~99