SentenceTransformer based on NovaSearch/stella_en_1.5B_v5

This is a sentence-transformers model finetuned from NovaSearch/stella_en_1.5B_v5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: NovaSearch/stella_en_1.5B_v5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model 
  (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("bod9/fulldshardneg")
# Run inference
sentences = [
    '#1 small corded treadmill without remote control',
    'SUNNY HEALTH & FITNESS ASUNA Space Saving Treadmill, Motorized with Speakers for AUX Audio Connection - 8730G',
    'Goplus Under Desk Treadmill, with Touchable LED Display and Wireless Remote Control, Built-in 3 Workout Modes and 12 Programs, Walking Jogging Machine, Superfit Electric Treadmill for Home Office',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5244
cosine_accuracy@3 0.7189
cosine_accuracy@5 0.7823
cosine_accuracy@10 0.8453
cosine_precision@1 0.5244
cosine_precision@3 0.4476
cosine_precision@5 0.4002
cosine_precision@10 0.3198
cosine_recall@1 0.0937
cosine_recall@3 0.2136
cosine_recall@5 0.298
cosine_recall@10 0.4318
cosine_ndcg@5 0.4676
cosine_ndcg@10 0.4681
cosine_mrr@1 0.5244
cosine_mrr@5 0.6257
cosine_mrr@10 0.6341
cosine_map@10 0.3493
cosine_map@100 0.4065

Graded IR

  • Dataset: gr_evaluation
  • Evaluated with GradedIREvaluator.GradedIREvaluator
Metric Value
cosine_accuracy@1 0.7088
cosine_accuracy@3 0.9038
cosine_accuracy@5 0.9463
cosine_accuracy@10 0.984
cosine_precision@1 0.7088
cosine_precision@3 0.6469
cosine_precision@5 0.6045
cosine_precision@10 0.5284
cosine_recall@1 0.1272
cosine_recall@3 0.3093
cosine_recall@5 0.449
cosine_recall@10 0.7099
cosine_ndcg@5 0.7127
cosine_ndcg@10 0.7543
cosine_mrr@1 0.7088
cosine_mrr@5 0.8066
cosine_mrr@10 0.8118
cosine_map@10 0.6051
cosine_map@100 0.6944

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bod9/stella_en_1.5B_v5-ecom-retrieval

Finetuned
(17)
this model

Evaluation results