metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
base_model: NovaSearch/stella_en_1.5B_v5
widget:
- source_sentence: $230 pool for outdoors not plastic
sentences:
- >-
Wireless Outdoor Security Camera, WiFi Solar Rechargeable Battery Power
IP Surveillance Home Cameras, 1080P, Human Motion Detection, Night
Vision, 2-Way Audio, 4dbi Antenna, IP65 Waterproof, Cloud/SD
- Bestway SaluSpa Miami Inflatable Hot Tub, 4-Person AirJet Spa
- Mens Plush Robe - Fleece Robe, Mens Bathrobe - Fig -Small/Medium
- source_sentence: (hearing aid not amplifer)
sentences:
- Hearing Aid Cleaning Wire for Sound Tubes (2 Packs of 5)
- >-
Hearing Aids, Enjoyee Hearing Aids for Seniors Rechargeable Hearing
Amplifier with Noise Cancelling for Adults Hearing Loss, Digital Ear
Hearing Assist Devices with Volume Control
- >-
24 Pieces Checking Erasable Pencils Red Pencils Pre-Sharpened #2 HB with
Erasable Tops for Checking Map Coloring Tests Grading
- source_sentence: (can not use in the usa) european 220voltage hair tools
sentences:
- Umarex 2252109 Brodax Air Pistol .177 BB
- >-
One-Step Hair Dryer & Volumizer Hot Air Brush, 3-in-1 Hair Dryer Brush
Styler for Straightening, Curling, Salon Negative Ion Ceramic
Lightweight Blow Dryers Straightener Curl Hair Brush
- >-
Mini Portable Flat Iron Tourmaline Ceramic Dual Voltage Travel Iron for
Worldwide Use LED Indicator LOVANI Hair Straightener (Ceramic Mini)
- source_sentence: '''not my circus not my monkeys my monkeys flyshirt'''
sentences:
- >-
Dresswel Women This is My Circus These are My Monkeys T-Shirt Mom Life
Graphic Tee Pocket Shirt Casual Tops
- >-
Goyunwell Nylon Black Zippers by The Yard #5 10 Yards Nylon Black Long
Zipper Tape for Sewing 20Pcs Gunmetal Pulls Slider Zipper by The Yard
Black Zipper Roll for Craft Bag Purse Sewing Black Tape
- Not My Circus Not My Monkeys Party T-Shirt
- source_sentence: '#1 small corded treadmill without remote control'
sentences:
- >-
Goplus Under Desk Treadmill, with Touchable LED Display and Wireless
Remote Control, Built-in 3 Workout Modes and 12 Programs, Walking
Jogging Machine, Superfit Electric Treadmill for Home Office
- Pencil Guy Untipped white round pencil, no eraser 144 to a box
- >-
SUNNY HEALTH & FITNESS ASUNA Space Saving Treadmill, Motorized with
Speakers for AUX Audio Connection - 8730G
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@1
- cosine_mrr@5
- cosine_mrr@10
- cosine_map@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on NovaSearch/stella_en_1.5B_v5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: ir evaluation
type: ir_evaluation
metrics:
- type: cosine_accuracy@1
value: 0.5243984708792444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7189116258151563
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.782325163031257
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8452889588486621
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5243984708792444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.44764260550183643
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.4002248706993479
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.3198335956824826
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09367303103726933
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21358059074273028
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2980042886250134
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.43181596262310956
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.46762394517912087
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.46811760590873697
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.5243984708792444
name: Cosine Mrr@1
- type: cosine_mrr@5
value: 0.625680233865528
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.6341315350816145
name: Cosine Mrr@10
- type: cosine_map@10
value: 0.34926714503106293
name: Cosine Map@10
- type: cosine_map@100
value: 0.4065326888005573
name: Cosine Map@100
- task:
type: graded-ir
name: Graded IR
dataset:
name: gr evaluation
type: gr_evaluation
metrics:
- type: cosine_accuracy@1
value: 0.708792444344502
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9037553406791096
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9462559028558579
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9840341803463009
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.708792444344502
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.6468780451240538
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.6044974139869574
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.5283786822577018
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12721101888273206
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.30930165915538804
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4489712213025254
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7098551817763595
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7127144186187505
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7543447490248549
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.708792444344502
name: Cosine Mrr@1
- type: cosine_mrr@5
value: 0.8065999550258622
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.8118267710352285
name: Cosine Mrr@10
- type: cosine_map@10
value: 0.6051494969120079
name: Cosine Map@10
- type: cosine_map@100
value: 0.6944358205631005
name: Cosine Map@100
SentenceTransformer based on NovaSearch/stella_en_1.5B_v5
This is a sentence-transformers model finetuned from NovaSearch/stella_en_1.5B_v5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: NovaSearch/stella_en_1.5B_v5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bod9/fulldshardneg")
# Run inference
sentences = [
'#1 small corded treadmill without remote control',
'SUNNY HEALTH & FITNESS ASUNA Space Saving Treadmill, Motorized with Speakers for AUX Audio Connection - 8730G',
'Goplus Under Desk Treadmill, with Touchable LED Display and Wireless Remote Control, Built-in 3 Workout Modes and 12 Programs, Walking Jogging Machine, Superfit Electric Treadmill for Home Office',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
ir_evaluation - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.5244 |
| cosine_accuracy@3 | 0.7189 |
| cosine_accuracy@5 | 0.7823 |
| cosine_accuracy@10 | 0.8453 |
| cosine_precision@1 | 0.5244 |
| cosine_precision@3 | 0.4476 |
| cosine_precision@5 | 0.4002 |
| cosine_precision@10 | 0.3198 |
| cosine_recall@1 | 0.0937 |
| cosine_recall@3 | 0.2136 |
| cosine_recall@5 | 0.298 |
| cosine_recall@10 | 0.4318 |
| cosine_ndcg@5 | 0.4676 |
| cosine_ndcg@10 | 0.4681 |
| cosine_mrr@1 | 0.5244 |
| cosine_mrr@5 | 0.6257 |
| cosine_mrr@10 | 0.6341 |
| cosine_map@10 | 0.3493 |
| cosine_map@100 | 0.4065 |
Graded IR
- Dataset:
gr_evaluation - Evaluated with
GradedIREvaluator.GradedIREvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.7088 |
| cosine_accuracy@3 | 0.9038 |
| cosine_accuracy@5 | 0.9463 |
| cosine_accuracy@10 | 0.984 |
| cosine_precision@1 | 0.7088 |
| cosine_precision@3 | 0.6469 |
| cosine_precision@5 | 0.6045 |
| cosine_precision@10 | 0.5284 |
| cosine_recall@1 | 0.1272 |
| cosine_recall@3 | 0.3093 |
| cosine_recall@5 | 0.449 |
| cosine_recall@10 | 0.7099 |
| cosine_ndcg@5 | 0.7127 |
| cosine_ndcg@10 | 0.7543 |
| cosine_mrr@1 | 0.7088 |
| cosine_mrr@5 | 0.8066 |
| cosine_mrr@10 | 0.8118 |
| cosine_map@10 | 0.6051 |
| cosine_map@100 | 0.6944 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}