|
|
--- |
|
|
task_categories: |
|
|
- image-segmentation |
|
|
--- |
|
|
# NLCD-L |
|
|
This dataset incorporates both SSL4EO-L Benchmark dataset and the NLCD-L dataset which is derived from the original SSL4EO-L Benchmark dataset by combining optical data from Landsat-7 and Landsat 8-9 with NLCD ground-truth labels, originally proposed in SSL4EO-L. The dataset contains 20 MSI bands, deliberately exceeding Sentinel-2’s channel count. It comprises 17,500 training samples, 3,750 validation samples, and 3,750 test samples. |
|
|
|
|
|
Please refer to the original SSL4EO-L paper for more detailed information about the original SSL4EO-L Benchmark dataset: |
|
|
- Paper: https://arxiv.org/abs/2306.09424 |
|
|
|
|
|
## How to Use This Dataset |
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# To access NLCD-L, set name to etm_oli_toa_nlcd in load_dataset function |
|
|
dataset = load_dataset("GFM-Bench/SSL4EO-L-Benchmark", name="etm_oli_toa_nlcd") |
|
|
``` |
|
|
|
|
|
Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗 |
|
|
|
|
|
## Dataset Metadata |
|
|
|
|
|
The following metadata provides details about the Landsat imagery used in the dataset: |
|
|
| Configuration Name | Number of Bands | Number of Label Classes | Spatial Resolution | |
|
|
|:---------------:|:------------:|:------------:|:------------:| |
|
|
| etm_sr_cdl | 6 | 134 | 30 | |
|
|
| etm_sr_nlcd | 6 | 21 | 30 | |
|
|
| etm_toa_cdl | 9 | 134 | 30 | |
|
|
| etm_toa_nlcd | 9 | 21 | 30 | |
|
|
| oli_sr_nlcd | 7 | 134 | 30 | |
|
|
| oli_sr_nlcd | 7 | 21 | 30 | |
|
|
| oli_tirs_toa_cdl | 11 | 134 | 30 | |
|
|
| oli_tirs_toa_nlcd | 11 | 21 | 30 | |
|
|
| **etm_oli_toa_cdl** | 20 | 134 | 30 | |
|
|
| **etm_oli_toa_nlcd** | 20 | 21 | 30 | |
|
|
|
|
|
## Dataset Splits |
|
|
The **NLCD-L** and SSL4EO-L Benchmark dataset consist following splits: |
|
|
- **train**: 17,500 samples |
|
|
- **val**: 3,750 samples |
|
|
- **test**: 3,750 samples |
|
|
|
|
|
## Dataset Features: |
|
|
The **NLCD-L** and SSL4EO-L dataset consist of following features: |
|
|
<!--- **radar**: the Sentinel-1 image.--> |
|
|
- **optical**: the Landsat image. |
|
|
- **label**: the segmentation labels. |
|
|
<!--- **radar_channel_wv**: the central wavelength of each Sentinel-1 bands.--> |
|
|
- **optical_channel_wv**: the central wavelength of each Landsat bands. |
|
|
- **spatial_resolution**: the spatial resolution of images. |
|
|
## Citation |
|
|
If you use either the NLCD-L dataset or the original SSL4EO-L Benchmark dataset in your work, please cite the original paper: |
|
|
``` |
|
|
@article{stewart2023ssl4eo, |
|
|
title={Ssl4eo-l: Datasets and foundation models for landsat imagery}, |
|
|
author={Stewart, Adam and Lehmann, Nils and Corley, Isaac and Wang, Yi and Chang, Yi-Chia and Ait Ali Braham, Nassim Ait and Sehgal, Shradha and Robinson, Caleb and Banerjee, Arindam}, |
|
|
journal={Advances in Neural Information Processing Systems}, |
|
|
volume={36}, |
|
|
pages={59787--59807}, |
|
|
year={2023} |
|
|
} |
|
|
``` |
|
|
and if you also find our benchmark useful, please consider citing our paper: |
|
|
``` |
|
|
@misc{si2025scalablefoundationmodelmultimodal, |
|
|
title={Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data}, |
|
|
author={Haozhe Si and Yuxuan Wan and Minh Do and Deepak Vasisht and Han Zhao and Hendrik F. Hamann}, |
|
|
year={2025}, |
|
|
eprint={2503.12843}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CV}, |
|
|
url={https://arxiv.org/abs/2503.12843}, |
|
|
} |
|
|
``` |