autosolve-telemetry / README.md
UsamaSQ's picture
Update README.md
3347acb verified
|
raw
history blame
9.75 kB
---
license: mit
task_categories:
- time-series-forecasting
- robotics
- video-classification
- feature-extraction
tags:
- blender
- camera-tracking
- vfx
- optical-flow
- computer-vision
pretty_name: AutoSolve Telemetry
size_categories:
- n<1K
---
# πŸ§ͺ AutoSolve Research Dataset (Beta)
> **Community-driven telemetry for 3D Camera Tracking**
This dataset collects anonymized tracking sessions from the [AutoSolve Blender Addon](https://github.com/UsamaSQ/AutoSolve). It trains an adaptive learning system that predicts optimal tracking settings (Search Size, Pattern Size, Motion Models) based on footage characteristics.
---
## 🀝 How to Contribute
Your data makes AutoSolve smarter for everyone.
### Step 1: Export from Blender
1. Open Blender and go to the **Movie Clip Editor**.
2. In the **AutoSolve** panel, find the **Research Beta** sub-panel.
3. Click **Export** (exports as `autosolve_telemetry_YYYYMMDD_HHMMSS.zip`).
### Step 2: Upload Here
1. Click the **"Files and versions"** tab at the top of this page.
2. Click **"Add file"** β†’ **"Upload file"**. (You need to be Logged-In to HuggingFace to upload)
3. Drag and drop your `.zip` file.
4. _(Optional)_ Add a brief description: e.g., "10 drone shots, 4K 30fps, outdoor"
5. Click **"Commit changes"** (creates a Pull Request).
**Note:** Contributions are reviewed before merging to ensure data quality and privacy compliance.
### Step 3: Join the Community
Have questions or want to discuss your contributions?
**Discord:** [Join our community](https://discord.gg/qUvrXHP9PU)
**Documentation:** [Full contribution guide](https://github.com/UsamaSQ/AutoSolve/blob/main/CONTRIBUTING_DATA.md)
---
## πŸ“Š Dataset Structure
Each ZIP file contains anonymized numerical telemetry:
### 1. Session Records (`/sessions/*.json`)
Individual tracking attempts with complete metrics.
**What's Included:**
- **Footage Metadata:** Resolution, FPS, Frame Count
- **Settings Used:** Pattern Size, Search Size, Correlation, Motion Model
- **Results:** Solve Error, Bundle Count, Success/Failure
- **Camera Intrinsics:** Focal Length, Sensor Size, Distortion Coefficients (K1, K2, K3)
- **Motion Analysis:** Motion Class (LOW/MEDIUM/HIGH), Parallax Score, Velocity Statistics
- **Feature Density:** Count of trackable features per 9-grid region (from Blender's detect_features)
- **Time Series:** Per-frame active tracks, dropout rates, velocity profiles
- **Track Lifecycle:** Per-marker survival, jitter, reprojection error
- **Track Healing:** Anchor tracks, healing attempts, gap interpolation results
- **Track Averaging:** Merged segment counts
**Example Session:**
```json
{
"schema_version": 1,
"timestamp": "2025-12-12T10:30:00",
"resolution": [1920, 1080],
"fps": 30,
"frame_count": 240,
"settings": {
"pattern_size": 17,
"search_size": 91,
"correlation": 0.68,
"motion_model": "LocRot"
},
"success": true,
"solve_error": 0.42,
"bundle_count": 45,
"motion_class": "MEDIUM",
"visual_features": {
"feature_density": {
"center": 12,
"top-left": 8,
"top-right": 6
},
"motion_magnitude": 0.015,
"edge_density": {
"center": 0.85,
"top-left": 0.42
}
}
"healing_stats": {
"candidates_found": 5,
"heals_attempted": 3,
"heals_successful": 2,
"avg_gap_frames": 15.0
}
}
```
### 2. Behavior Records (`/behavior/*.json`)
**THE KEY LEARNING DATA** - How experts improve tracking.
**What's Captured:**
- **Track Additions:** πŸ”‘ Which markers users manually add (region, position, quality)
- **Track Deletions:** Which markers users remove (region, lifespan, error, reason)
- **Settings Adjustments:** Which parameters users changed (before/after values)
- **Re-solve Results:** Whether user changes improved solve error
- **Marker Refinements:** Manual position adjustments
- **Net Track Change:** How many tracks were added vs removed
- **Region Reinforcement:** Which regions pros manually populated
**Purpose:** Teaches the AI how experts **improve** tracking, not just cleanup.
**Example Behavior:**
```json
{
"schema_version": 1,
"clip_fingerprint": "a7f3c89b2e71d6f0",
"contributor_id": "x7f2k9a1",
"iteration": 3,
"track_additions": [
{
"track_name": "Track.042",
"region": "center",
"initial_frame": 45,
"position": [0.52, 0.48],
"lifespan_achieved": 145,
"had_bundle": true,
"reprojection_error": 0.32
}
],
"track_deletions": [
{
"track_name": "Track.003",
"region": "top-right",
"lifespan": 12,
"had_bundle": false,
"reprojection_error": 2.8,
"inferred_reason": "high_error"
}
],
"net_track_change": 3,
"region_additions": { "center": 2, "bottom-center": 1 },
"re_solve": {
"attempted": true,
"error_before": 0.87,
"error_after": 0.42,
"improvement": 0.45,
"improved": true
}
}
```
### 3. Model State (`model.json`)
The user's local statistical model state showing learned patterns.
---
## πŸ“‹ What Gets Collected
Each contribution includes:
βœ… **Numerical Metrics**
- Tracking settings that worked (or failed)
- Motion analysis (velocity, direction, parallax)
- Per-track survival and quality metrics
- Feature density counts per region
βœ… **Camera Characteristics**
- Focal length and sensor size
- Lens distortion coefficients
- Principal point coordinates
βœ… **Time Series Data**
- Per-frame active track counts
- Track dropout rates
- Velocity profiles over time
---
## πŸ”’ Data Privacy & Ethics
We take privacy seriously. This dataset contains **numerical telemetry only**.
❌ **NOT Collected:**
- Images, video frames, or pixel data
- File paths or project names
- User identifiers (IPs, usernames, emails)
- System information
βœ… **Only Collected:**
- Resolution, FPS, frame count
- Mathematical motion vectors
- Tracking settings and success metrics
- Feature density counts (not actual features)
_For complete schema documentation, see [TRAINING_DATA.md](https://github.com/UsamaSQ/AutoSolve/blob/main/TRAINING_DATA.md)_
---
## πŸ›  Usage for Researchers
This data is ideal for training models related to:
### Hyperparameter Optimization
Predicts optimal tracking settings (Search Size, Pattern Size, Correlation, Motion Models) based on footage characteristics and motion analysis.
### Outlier Detection
Identifying "bad" 2D tracks before camera solve using lifecycle and jitter patterns.
### Motion Classification
Classifying camera motion types (Drone, Handheld, Tripod) from sparse optical flow and feature density.
### Temporal Modeling
Predicting track dropout using RNN/LSTM trained on per-frame time series data.
---
## πŸ’» Loading the Dataset
### Python Example
```python
import json
import zipfile
from pathlib import Path
from collections import defaultdict
# Load a contributed ZIP
zip_path = Path('autosolve_telemetry_20251212_103045.zip')
with zipfile.ZipFile(zip_path, 'r') as zf:
# Read manifest
manifest = json.loads(zf.read('manifest.json'))
print(f"Export Version: {manifest['export_version']}")
print(f"Sessions: {manifest['session_count']}")
print(f"Behaviors: {manifest['behavior_count']}")
# Load all sessions
sessions = []
for filename in zf.namelist():
if filename.startswith('sessions/') and filename.endswith('.json'):
session_data = json.loads(zf.read(filename))
sessions.append(session_data)
# Analyze by footage class
by_class = defaultdict(list)
for s in sessions:
width = s['resolution'][0]
fps = s['fps']
motion = s.get('motion_class', 'MEDIUM')
cls = f"{'HD' if width >= 1920 else 'SD'}_{int(fps)}fps_{motion}"
by_class[cls].append(s['success'])
# Success rates per class
print("\nSuccess Rates by Footage Class:")
for cls, results in sorted(by_class.items()):
rate = sum(results) / len(results)
print(f" {cls}: {rate:.1%} ({len(results)} sessions)")
```
### Feature Extraction Example
```python
# Extract feature density patterns
feature_densities = []
for session in sessions:
vf = session.get('visual_features', {})
density = vf.get('feature_density', {})
if density:
feature_densities.append({
'motion_class': session.get('motion_class'),
'center': density.get('center', 0),
'edges': sum([
density.get('top-left', 0),
density.get('top-right', 0),
density.get('bottom-left', 0),
density.get('bottom-right', 0)
]) / 4,
'success': session['success']
})
# Analyze: Do edge-heavy clips succeed more?
import pandas as pd
df = pd.DataFrame(feature_densities)
print(df.groupby('success')['edges'].mean())
```
---
## πŸ“ˆ Dataset Statistics
**Current Status:** Beta Collection Phase
**Target:**
- 100+ unique footage types
- 500+ successful tracking sessions
- Diverse motion classes and resolutions
**Contribute** to help us reach production-ready dataset size! πŸš€
---
## πŸ“– Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{autosolve-telemetry-2025,
title={AutoSolve Telemetry: Community-Driven Camera Tracking Dataset},
author={Bin Shahid, Usama},
year={2025},
publisher={HuggingFace},
url={https://huggingface.co/datasets/UsamaSQ/autosolve-telemetry}
}
```
---
## 🀝 Community & Support
**Repository:** [GitHub.com/UsamaSQ/AutoSolve](https://github.com/UsamaSQ/AutoSolve)
**Discord:** [Join our community](https://discord.gg/qUvrXHP9PU)
**Maintainer:** Usama Bin Shahid
Your contributions make AutoSolve better for everyone! πŸ™