CodeReality / benchmarks /code_completion_benchmark.py
Vincenzo Gallo
Add CodeReality-1T Evaluation Subset (19GB)
6759906
raw
history blame
13.4 kB
#!/usr/bin/env python3
"""
Code Completion Benchmark for CodeReality-1T Dataset
Evaluates code completion models using Pass@k metrics
"""
import json
import os
import re
import random
from typing import Dict, List, Tuple, Optional
from collections import defaultdict
def load_dataset_sample(data_dir: str, sample_size: int = 200) -> List[Dict]:
"""Load sample of repositories with code files."""
print(f"🔍 Loading sample of {sample_size} repositories with code files...")
repositories = []
files = [f for f in os.listdir(data_dir) if f.endswith('.jsonl')]
random.shuffle(files)
for filename in files[:15]: # Sample from first 15 files
file_path = os.path.join(data_dir, filename)
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
for line in f:
if len(repositories) >= sample_size:
break
try:
repo_data = json.loads(line)
# Filter repositories with code files
if has_code_files(repo_data):
repositories.append(repo_data)
except json.JSONDecodeError:
continue
except Exception as e:
continue
if len(repositories) >= sample_size:
break
print(f"✅ Loaded {len(repositories)} repositories with code files")
return repositories
def has_code_files(repo: Dict) -> bool:
"""Check if repository contains code files."""
code_extensions = {'.py', '.js', '.java', '.cpp', '.c', '.go', '.rs', '.ts'}
files = repo.get('files', [])
for file_obj in files:
if isinstance(file_obj, dict):
file_path = file_obj.get('path', '')
if any(file_path.endswith(ext) for ext in code_extensions):
return True
return False
def extract_function_snippets(repo: Dict, language: str = 'python') -> List[Dict]:
"""Extract function definitions for completion tasks."""
snippets = []
# Language-specific patterns
patterns = {
'python': r'def\s+(\w+)\s*\([^)]*\):\s*',
'javascript': r'function\s+(\w+)\s*\([^)]*\)\s*{',
'java': r'(?:public|private|protected)?\s*(?:static)?\s*\w+\s+(\w+)\s*\([^)]*\)\s*{',
'cpp': r'\w+\s+(\w+)\s*\([^)]*\)\s*{',
}
if language not in patterns:
return snippets
pattern = patterns[language]
extension_map = {
'python': '.py',
'javascript': '.js',
'java': '.java',
'cpp': '.cpp'
}
target_ext = extension_map[language]
files = repo.get('files', [])
for file_obj in files:
if isinstance(file_obj, dict):
file_path = file_obj.get('path', '')
content = file_obj.get('content', '')
if file_path.endswith(target_ext) and content:
matches = list(re.finditer(pattern, content, re.MULTILINE))
for match in matches:
start_pos = match.start()
function_name = match.group(1)
# Get context before function
lines_before = content[:start_pos].split('\n')
context_lines = lines_before[-5:] if len(lines_before) >= 5 else lines_before
context = '\n'.join(context_lines)
# Get function body (simplified - until next function or end)
remaining_content = content[start_pos:]
lines = remaining_content.split('\n')
function_lines = []
indent_level = None
for i, line in enumerate(lines):
if i == 0:
function_lines.append(line)
continue
# Detect indentation level
if indent_level is None and line.strip():
indent_level = len(line) - len(line.lstrip())
# Stop if we hit same or lower indentation level (end of function)
if line.strip() and indent_level is not None:
current_indent = len(line) - len(line.lstrip())
if current_indent <= indent_level and not line.strip().startswith(('if', 'for', 'while', 'try', 'except', 'else', 'elif')):
break
function_lines.append(line)
# Limit function length
if len(function_lines) > 20:
break
function_body = '\n'.join(function_lines)
# Create completion task: provide function signature, expect body
if len(function_lines) > 3: # Only meaningful functions
snippets.append({
'function_name': function_name,
'context': context,
'prompt': function_lines[0], # Function signature
'completion': '\n'.join(function_lines[1:]), # Function body
'file_path': file_path,
'language': language
})
return snippets
def simple_code_completion_model(prompt: str, language: str) -> List[str]:
"""Simple rule-based code completion for demonstration."""
completions = []
# Generate multiple completions (for Pass@k evaluation)
templates = {
'python': [
" pass",
" return None",
" # TODO: implement this function\n pass",
" result = None\n return result",
" # Implementation needed\n raise NotImplementedError()"
],
'javascript': [
" return null;",
" // TODO: implement\n return;",
" throw new Error('Not implemented');",
" var result = null;\n return result;",
" console.log('Function called');\n return;"
],
'java': [
" return null;",
" // TODO: implement this method\n return null;",
" throw new UnsupportedOperationException();",
" Object result = null;\n return result;",
" System.out.println(\"Method called\");\n return null;"
]
}
if language in templates:
# Return multiple variations for Pass@k evaluation
return templates[language]
else:
return ["// TODO: implement"]
def evaluate_completion_quality(predicted: str, actual: str) -> float:
"""Simple evaluation of completion quality."""
# Normalize strings
pred_lines = [line.strip() for line in predicted.split('\n') if line.strip()]
actual_lines = [line.strip() for line in actual.split('\n') if line.strip()]
if not actual_lines:
return 0.0
# Check for basic structural similarity
score = 0.0
# Check if both are empty implementations
empty_indicators = ['pass', 'todo', 'not implemented', 'null', 'return;', 'return null'}
pred_empty = any(indicator in predicted.lower() for indicator in empty_indicators)
actual_empty = any(indicator in actual.lower() for indicator in empty_indicators)
if pred_empty and actual_empty:
score += 0.8
elif not pred_empty and not actual_empty:
# Check for keyword similarity
pred_keywords = set(re.findall(r'\b\w+\b', predicted.lower()))
actual_keywords = set(re.findall(r'\b\w+\b', actual.lower()))
if actual_keywords:
keyword_overlap = len(pred_keywords & actual_keywords) / len(actual_keywords)
score += keyword_overlap * 0.6
# Check for similar line count
line_ratio = min(len(pred_lines), len(actual_lines)) / max(len(pred_lines), len(actual_lines))
score += line_ratio * 0.4
return min(score, 1.0)
def calculate_pass_at_k(completion_results: List[Tuple[List[str], str]], k: int = 1) -> float:
"""Calculate Pass@k metric."""
if k <= 0:
return 0.0
total_passed = 0
for completions, ground_truth in completion_results:
# Take top k completions
top_k_completions = completions[:k]
# Check if any completion passes
passed = False
for completion in top_k_completions:
quality_score = evaluate_completion_quality(completion, ground_truth)
if quality_score > 0.5: # Threshold for "passing"
passed = True
break
if passed:
total_passed += 1
return total_passed / len(completion_results) if completion_results else 0.0
def run_completion_benchmark(repositories: List[Dict]) -> Dict:
"""Run code completion benchmark."""
print("🧮 Running code completion benchmark...")
results = {
'total_repositories': len(repositories),
'completion_tasks': [],
'language_stats': defaultdict(int),
'pass_at_1': 0.0,
'pass_at_3': 0.0,
'pass_at_5': 0.0,
'average_quality': 0.0
}
completion_results = []
quality_scores = []
# Extract function snippets from repositories
for repo in repositories:
for language in ['python', 'javascript', 'java']:
snippets = extract_function_snippets(repo, language)
for snippet in snippets[:2]: # Limit per repo for performance
results['language_stats'][language] += 1
# Generate completions
completions = simple_code_completion_model(snippet['prompt'], language)
ground_truth = snippet['completion']
completion_results.append((completions, ground_truth))
# Calculate quality for first completion
if completions:
quality = evaluate_completion_quality(completions[0], ground_truth)
quality_scores.append(quality)
results['completion_tasks'].append({
'function_name': snippet['function_name'],
'language': language,
'prompt_length': len(snippet['prompt']),
'completion_length': len(ground_truth)
})
# Calculate metrics
results['pass_at_1'] = calculate_pass_at_k(completion_results, 1)
results['pass_at_3'] = calculate_pass_at_k(completion_results, 3)
results['pass_at_5'] = calculate_pass_at_k(completion_results, 5)
results['average_quality'] = sum(quality_scores) / len(quality_scores) if quality_scores else 0.0
return results
def print_benchmark_results(results: Dict):
"""Print formatted benchmark results."""
print("=" * 60)
print("🎯 CODE COMPLETION BENCHMARK RESULTS")
print("=" * 60)
print(f"Total repositories: {results['total_repositories']}")
print(f"Completion tasks: {len(results['completion_tasks'])}")
print(f"\n📊 Pass@k Metrics:")
print(f" Pass@1: {results['pass_at_1']:.3f}")
print(f" Pass@3: {results['pass_at_3']:.3f}")
print(f" Pass@5: {results['pass_at_5']:.3f}")
print(f" Average Quality: {results['average_quality']:.3f}")
print(f"\n🔤 Language Distribution:")
for language, count in sorted(results['language_stats'].items(), key=lambda x: x[1], reverse=True):
print(f" {language}: {count} functions")
print(f"\n💡 Insights:")
print("- This is a simplified demonstration benchmark")
print("- Real evaluation requires more sophisticated code execution")
print("- CodeReality-1T provides diverse, noisy code for robust testing")
print("- Consider functional correctness testing for production models")
def main():
"""Run code completion benchmark."""
print("🚀 CodeReality-1T Code Completion Benchmark")
print("=" * 60)
# Configuration
data_dir = "/mnt/z/CodeReality_Final/unified_dataset"
sample_size = 100
if not os.path.exists(data_dir):
print(f"❌ Dataset directory not found: {data_dir}")
print("Please update the data_dir path to point to your CodeReality-1T dataset")
return
# Load dataset sample
repositories = load_dataset_sample(data_dir, sample_size)
if not repositories:
print("❌ No repositories loaded. Check dataset path.")
return
# Run benchmark
results = run_completion_benchmark(repositories)
# Print results
print_benchmark_results(results)
# Save results
output_file = "code_completion_results.json"
with open(output_file, 'w') as f:
# Convert defaultdict to regular dict for JSON serialization
results_json = {
'total_repositories': results['total_repositories'],
'completion_tasks': results['completion_tasks'],
'language_stats': dict(results['language_stats']),
'pass_at_1': results['pass_at_1'],
'pass_at_3': results['pass_at_3'],
'pass_at_5': results['pass_at_5'],
'average_quality': results['average_quality']
}
json.dump(results_json, f, indent=2)
print(f"\n💾 Results saved to: {output_file}")
if __name__ == "__main__":
main()