metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
In reparto c’era lei [Mariangela Ferrari] quando i genitori della piccola
Sara [Sara Rapini] giunsero di corsa in ospedale perché la bambina
accusava forti dolori addominali e aveva febbre alta.
- text: >-
Le parole del testimone Sebastiano F., 55 anni, il testimone citato,
assieme a un altro, nel dossier sullo scandalo gay nei carmelitani É lui
stesso, Sebastiano F., originario della Sicilia, a raccontare: «Certo che
c’entra la mia storia con il prete.
- text: >-
«Non lo faccio – ribadisce [Lucrezia Bona] - perché penso che il punto
della questione non sia questo adesso.
- text: >-
«Per combattere l’allarmante calo delle vaccinazioni nel nostro Paese ho
deciso con alcuni colleghi di intervenire con norme idonee, presentando
alla Camera un progetto di legge che reintroduce l’obbligo per i bambini
che frequentano le scuole dell’obbligo» ha detto Crimì [Filippo Crimì].
- text: >-
Ci scusiamo con i cittadini per i disagi, il Comune ha programmato i
lavori per ridurne al minimo l'impatto".
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/distiluse-base-multilingual-cased-v1
model-index:
- name: SetFit with sentence-transformers/distiluse-base-multilingual-cased-v1
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.568284789644013
name: Accuracy
SetFit with sentence-transformers/distiluse-base-multilingual-cased-v1
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/distiluse-base-multilingual-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/distiluse-base-multilingual-cased-v1
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
Evaluation
Metrics
| Label | Accuracy |
|---|---|
| all | 0.5683 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("fede-m/FGSDI_final_setfit_fold_2")
# Run inference
preds = model("«Non lo faccio – ribadisce [Lucrezia Bona] - perché penso che il punto della questione non sia questo adesso.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 39.6207 | 139 |
| Label | Training Sample Count |
|---|---|
| 0 | 45 |
| 1 | 245 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0028 | 1 | 0.5423 | - |
| 0.1377 | 50 | 0.2061 | - |
| 0.2755 | 100 | 0.0246 | - |
| 0.4132 | 150 | 0.0067 | - |
| 0.5510 | 200 | 0.0019 | - |
| 0.6887 | 250 | 0.0009 | - |
| 0.8264 | 300 | 0.0006 | - |
| 0.9642 | 350 | 0.0006 | - |
Framework Versions
- Python: 3.12.12
- SetFit: 1.1.3
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}