Qwen3-0.6B-NVFP4 / README.md
llmat's picture
Update README.md
b444d15 verified
---
language: en
license: apache-2.0
pipeline_tag: text-generation
tags:
- quantization
- nvfp4
- qwen
base_model: Qwen/Qwen3-0.6B
model_name: Qwen3-0.6B-NVFP4
---
# Qwen3-0.6B-NVFP4
NVFP4-quantized version of `Qwen/Qwen3-0.6B` produced with [llmcompressor](https://github.com/neuralmagic/llm-compressor).
## Notes
- Quantization scheme: NVFP4 (linear layers, `lm_head` excluded)
- Calibration samples: 512
- Max sequence length during calibration: 2048
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "llmat/Qwen3-0.6B-NVFP4"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.