SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mehularora/scrabble-embed-v2")
# Run inference
sentences = [
'TRAUMATOLOGY',
"'the study of wounds and their effects [n TRAUMATOLOGIES]'",
"'FELLATRIX, a female who fellates [n]'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7472, 0.0801],
# [0.7472, 1.0000, 0.2525],
# [0.0801, 0.2525, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
dictionary-test - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.6825 |
| cosine_accuracy@3 | 0.8121 |
| cosine_accuracy@5 | 0.8311 |
| cosine_accuracy@10 | 0.8506 |
| cosine_precision@1 | 0.6825 |
| cosine_precision@3 | 0.2707 |
| cosine_precision@5 | 0.1662 |
| cosine_precision@10 | 0.0851 |
| cosine_recall@1 | 0.6825 |
| cosine_recall@3 | 0.8121 |
| cosine_recall@5 | 0.8311 |
| cosine_recall@10 | 0.8506 |
| cosine_ndcg@10 | 0.7751 |
| cosine_mrr@10 | 0.75 |
| cosine_map@100 | 0.7522 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 222,635 training samples
- Columns:
wordanddefinition - Approximate statistics based on the first 1000 samples:
word definition type string string details - min: 3 tokens
- mean: 4.87 tokens
- max: 9 tokens
- min: 10 tokens
- mean: 20.32 tokens
- max: 98 tokens
- Samples:
word definition LICHGATES'LICHGATE, the roofed gate of a churchyard, also LYCHGATE [n]'MOULDING'a long, narrow strip used to decorate a surface, also MOLDING [n -S]'PARABAPTISM'uncanonical baptism [n -S]' - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64learning_rate: 2e-05num_train_epochs: 1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | dictionary-test_cosine_ndcg@10 |
|---|---|---|---|
| 0.0287 | 100 | 1.0186 | 0.7180 |
| 0.0575 | 200 | 0.7633 | 0.7274 |
| 0.0862 | 300 | 0.75 | 0.7398 |
| 0.1150 | 400 | 0.7503 | 0.7456 |
| 0.1437 | 500 | 0.7271 | 0.7496 |
| 0.1725 | 600 | 0.6531 | 0.7508 |
| 0.2012 | 700 | 0.6586 | 0.7560 |
| 0.2300 | 800 | 0.6559 | 0.7591 |
| 0.2587 | 900 | 0.6116 | 0.7572 |
| 0.2874 | 1000 | 0.615 | 0.7625 |
| 0.3162 | 1100 | 0.5926 | 0.7596 |
| 0.3449 | 1200 | 0.6414 | 0.7623 |
| 0.3737 | 1300 | 0.6143 | 0.7641 |
| 0.4024 | 1400 | 0.6464 | 0.7655 |
| 0.4312 | 1500 | 0.6039 | 0.7676 |
| 0.4599 | 1600 | 0.514 | 0.7643 |
| 0.4886 | 1700 | 0.5719 | 0.7675 |
| 0.5174 | 1800 | 0.612 | 0.7675 |
| 0.5461 | 1900 | 0.5639 | 0.7698 |
| 0.5749 | 2000 | 0.6025 | 0.7672 |
| 0.6036 | 2100 | 0.5623 | 0.7719 |
| 0.6324 | 2200 | 0.5484 | 0.7698 |
| 0.6611 | 2300 | 0.5799 | 0.7730 |
| 0.6899 | 2400 | 0.5253 | 0.7716 |
| 0.7186 | 2500 | 0.5134 | 0.7732 |
| 0.7473 | 2600 | 0.5543 | 0.7721 |
| 0.7761 | 2700 | 0.5342 | 0.7736 |
| 0.8048 | 2800 | 0.5507 | 0.7746 |
| 0.8336 | 2900 | 0.5176 | 0.7737 |
| 0.8623 | 3000 | 0.5067 | 0.7751 |
| 0.8911 | 3100 | 0.548 | 0.7749 |
| 0.9198 | 3200 | 0.5443 | 0.7751 |
| 0.9485 | 3300 | 0.5603 | 0.7751 |
| 0.9773 | 3400 | 0.5774 | 0.7751 |
Framework Versions
- Python: 3.11.4
- Sentence Transformers: 5.1.2
- Transformers: 4.57.3
- PyTorch: 2.9.1+cpu
- Accelerate: 1.12.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Model tree for mehularora/scrabble-embed-v2
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on dictionary testself-reported0.683
- Cosine Accuracy@3 on dictionary testself-reported0.812
- Cosine Accuracy@5 on dictionary testself-reported0.831
- Cosine Accuracy@10 on dictionary testself-reported0.851
- Cosine Precision@1 on dictionary testself-reported0.683
- Cosine Precision@3 on dictionary testself-reported0.271
- Cosine Precision@5 on dictionary testself-reported0.166
- Cosine Precision@10 on dictionary testself-reported0.085
- Cosine Recall@1 on dictionary testself-reported0.683
- Cosine Recall@3 on dictionary testself-reported0.812