SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mehularora/scrabble-embed-v2")
# Run inference
sentences = [
    'TRAUMATOLOGY',
    "'the study of wounds and their effects [n TRAUMATOLOGIES]'",
    "'FELLATRIX, a female who fellates [n]'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7472, 0.0801],
#         [0.7472, 1.0000, 0.2525],
#         [0.0801, 0.2525, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6825
cosine_accuracy@3 0.8121
cosine_accuracy@5 0.8311
cosine_accuracy@10 0.8506
cosine_precision@1 0.6825
cosine_precision@3 0.2707
cosine_precision@5 0.1662
cosine_precision@10 0.0851
cosine_recall@1 0.6825
cosine_recall@3 0.8121
cosine_recall@5 0.8311
cosine_recall@10 0.8506
cosine_ndcg@10 0.7751
cosine_mrr@10 0.75
cosine_map@100 0.7522

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 222,635 training samples
  • Columns: word and definition
  • Approximate statistics based on the first 1000 samples:
    word definition
    type string string
    details
    • min: 3 tokens
    • mean: 4.87 tokens
    • max: 9 tokens
    • min: 10 tokens
    • mean: 20.32 tokens
    • max: 98 tokens
  • Samples:
    word definition
    LICHGATES 'LICHGATE, the roofed gate of a churchyard, also LYCHGATE [n]'
    MOULDING 'a long, narrow strip used to decorate a surface, also MOLDING [n -S]'
    PARABAPTISM 'uncanonical baptism [n -S]'
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256
        ],
        "matryoshka_weights": [
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dictionary-test_cosine_ndcg@10
0.0287 100 1.0186 0.7180
0.0575 200 0.7633 0.7274
0.0862 300 0.75 0.7398
0.1150 400 0.7503 0.7456
0.1437 500 0.7271 0.7496
0.1725 600 0.6531 0.7508
0.2012 700 0.6586 0.7560
0.2300 800 0.6559 0.7591
0.2587 900 0.6116 0.7572
0.2874 1000 0.615 0.7625
0.3162 1100 0.5926 0.7596
0.3449 1200 0.6414 0.7623
0.3737 1300 0.6143 0.7641
0.4024 1400 0.6464 0.7655
0.4312 1500 0.6039 0.7676
0.4599 1600 0.514 0.7643
0.4886 1700 0.5719 0.7675
0.5174 1800 0.612 0.7675
0.5461 1900 0.5639 0.7698
0.5749 2000 0.6025 0.7672
0.6036 2100 0.5623 0.7719
0.6324 2200 0.5484 0.7698
0.6611 2300 0.5799 0.7730
0.6899 2400 0.5253 0.7716
0.7186 2500 0.5134 0.7732
0.7473 2600 0.5543 0.7721
0.7761 2700 0.5342 0.7736
0.8048 2800 0.5507 0.7746
0.8336 2900 0.5176 0.7737
0.8623 3000 0.5067 0.7751
0.8911 3100 0.548 0.7749
0.9198 3200 0.5443 0.7751
0.9485 3300 0.5603 0.7751
0.9773 3400 0.5774 0.7751

Framework Versions

  • Python: 3.11.4
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.3
  • PyTorch: 2.9.1+cpu
  • Accelerate: 1.12.0
  • Datasets: 4.4.1
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
11
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mehularora/scrabble-embed-v2

Finetuned
(677)
this model

Evaluation results