scrabble-embed-v2 / README.md
mehularora's picture
Add new SentenceTransformer model
a4bf89b verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:222635
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
  - source_sentence: OMBRELLAS
    sentences:
      - '''ALPHASORT, to sort into alphabetic order [v]'''
      - '''OMBRELLA, an umbrella [n]'''
      - '''PHYLLID, the leaf of a liverwort or moss [n]'''
  - source_sentence: ROUNCE
    sentences:
      - '''LYMPHADENITIS, inflammation of the lymph nodes [n]'''
      - '''one who advocates curialism, the system of government of curia [n -S]'''
      - '''part of a hand printing press [n -S]'''
  - source_sentence: SEROON
    sentences:
      - >-
        '(Spanish) a crate or hamper; a bale wrapped in hide, also CEROON, SERON
        [n -S]'
      - >-
        'a white crystalline soluble phenol used as a photographic developer [n
        -S]'
      - '''serving to disseminate [adj]'''
  - source_sentence: BLAFF
    sentences:
      - '''to bark [v -ED, -ING, -S]'''
      - >-
        'RAZORCLAM, a lamellibranch mollusc with a shell like an old-fashioned
        razor handle, also RAZORFISH [n]'
      - >-
        'HYPERCORRECT, refers to a linguistic construction or pronunciation
        produced by mistaken analogy with standard usage out of a desire to be
        correct, such as "open widely" or "on behalf of my wife and I" [adv]'
  - source_sentence: TRAUMATOLOGY
    sentences:
      - '''FELLATRIX, a female who fellates [n]'''
      - '''pertaining to a grandparent [adj]'''
      - '''the study of wounds and their effects [n TRAUMATOLOGIES]'''
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dictionary test
          type: dictionary-test
        metrics:
          - type: cosine_accuracy@1
            value: 0.6825254231197672
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8121384167594955
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.831147364260304
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.850587516619354
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6825254231197672
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27071280558649846
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1662294728520608
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08505875166193541
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6825254231197672
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8121384167594955
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.831147364260304
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.850587516619354
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7750717041193917
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7499954655044675
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7522443165977887
            name: Cosine Map@100

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mehularora/scrabble-embed-v2")
# Run inference
sentences = [
    'TRAUMATOLOGY',
    "'the study of wounds and their effects [n TRAUMATOLOGIES]'",
    "'FELLATRIX, a female who fellates [n]'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7472, 0.0801],
#         [0.7472, 1.0000, 0.2525],
#         [0.0801, 0.2525, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6825
cosine_accuracy@3 0.8121
cosine_accuracy@5 0.8311
cosine_accuracy@10 0.8506
cosine_precision@1 0.6825
cosine_precision@3 0.2707
cosine_precision@5 0.1662
cosine_precision@10 0.0851
cosine_recall@1 0.6825
cosine_recall@3 0.8121
cosine_recall@5 0.8311
cosine_recall@10 0.8506
cosine_ndcg@10 0.7751
cosine_mrr@10 0.75
cosine_map@100 0.7522

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 222,635 training samples
  • Columns: word and definition
  • Approximate statistics based on the first 1000 samples:
    word definition
    type string string
    details
    • min: 3 tokens
    • mean: 4.87 tokens
    • max: 9 tokens
    • min: 10 tokens
    • mean: 20.32 tokens
    • max: 98 tokens
  • Samples:
    word definition
    LICHGATES 'LICHGATE, the roofed gate of a churchyard, also LYCHGATE [n]'
    MOULDING 'a long, narrow strip used to decorate a surface, also MOLDING [n -S]'
    PARABAPTISM 'uncanonical baptism [n -S]'
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256
        ],
        "matryoshka_weights": [
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dictionary-test_cosine_ndcg@10
0.0287 100 1.0186 0.7180
0.0575 200 0.7633 0.7274
0.0862 300 0.75 0.7398
0.1150 400 0.7503 0.7456
0.1437 500 0.7271 0.7496
0.1725 600 0.6531 0.7508
0.2012 700 0.6586 0.7560
0.2300 800 0.6559 0.7591
0.2587 900 0.6116 0.7572
0.2874 1000 0.615 0.7625
0.3162 1100 0.5926 0.7596
0.3449 1200 0.6414 0.7623
0.3737 1300 0.6143 0.7641
0.4024 1400 0.6464 0.7655
0.4312 1500 0.6039 0.7676
0.4599 1600 0.514 0.7643
0.4886 1700 0.5719 0.7675
0.5174 1800 0.612 0.7675
0.5461 1900 0.5639 0.7698
0.5749 2000 0.6025 0.7672
0.6036 2100 0.5623 0.7719
0.6324 2200 0.5484 0.7698
0.6611 2300 0.5799 0.7730
0.6899 2400 0.5253 0.7716
0.7186 2500 0.5134 0.7732
0.7473 2600 0.5543 0.7721
0.7761 2700 0.5342 0.7736
0.8048 2800 0.5507 0.7746
0.8336 2900 0.5176 0.7737
0.8623 3000 0.5067 0.7751
0.8911 3100 0.548 0.7749
0.9198 3200 0.5443 0.7751
0.9485 3300 0.5603 0.7751
0.9773 3400 0.5774 0.7751

Framework Versions

  • Python: 3.11.4
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.3
  • PyTorch: 2.9.1+cpu
  • Accelerate: 1.12.0
  • Datasets: 4.4.1
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}