pj-mathematician's picture
Add files using upload-large-folder tool
523c335 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:124788
  - loss:GISTEmbedLoss
base_model: BAAI/bge-m3
widget:
  - source_sentence: 其他机械、设备和有形货物租赁服务代表
    sentences:
      - 其他机械和设备租赁服务工作人员
      - 电子和电信设备及零部件物流经理
      - 工业主厨
  - source_sentence: 公交车司机
    sentences:
      - 表演灯光设计师
      - 乙烯基地板安装工
      - 国际巴士司机
  - source_sentence: online communication manager
    sentences:
      - trades union official
      - social media manager
      - budget manager
  - source_sentence: Projektmanagerin
    sentences:
      - Projektmanager/Projektmanagerin
      - Category-Manager
      - Infanterist
  - source_sentence: Volksvertreter
    sentences:
      - Parlamentarier
      - Oberbürgermeister
      - Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@20
  - cosine_accuracy@50
  - cosine_accuracy@100
  - cosine_accuracy@150
  - cosine_accuracy@200
  - cosine_precision@1
  - cosine_precision@20
  - cosine_precision@50
  - cosine_precision@100
  - cosine_precision@150
  - cosine_precision@200
  - cosine_recall@1
  - cosine_recall@20
  - cosine_recall@50
  - cosine_recall@100
  - cosine_recall@150
  - cosine_recall@200
  - cosine_ndcg@1
  - cosine_ndcg@20
  - cosine_ndcg@50
  - cosine_ndcg@100
  - cosine_ndcg@150
  - cosine_ndcg@200
  - cosine_mrr@1
  - cosine_mrr@20
  - cosine_mrr@50
  - cosine_mrr@100
  - cosine_mrr@150
  - cosine_mrr@200
  - cosine_map@1
  - cosine_map@20
  - cosine_map@50
  - cosine_map@100
  - cosine_map@150
  - cosine_map@200
  - cosine_map@500
model-index:
  - name: SentenceTransformer based on BAAI/bge-m3
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full en
          type: full_en
        metrics:
          - type: cosine_accuracy@1
            value: 0.6476190476190476
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9904761904761905
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9904761904761905
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9904761904761905
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9904761904761905
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9904761904761905
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6476190476190476
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.499047619047619
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.30266666666666664
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.18447619047619046
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.13155555555555554
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.10171428571428573
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.06690172806447445
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.5288155255988508
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.7128731386766649
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.821589853989195
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.8669290529739844
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.8881772271562451
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6476190476190476
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6737021289484512
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.6897381539459008
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7455379155828873
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7657730626526685
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7746920852324353
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6476190476190476
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7969444444444443
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7969444444444443
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.7969444444444443
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7969444444444443
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7969444444444443
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6476190476190476
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.5299368408688423
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.5170402457535271
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.549577105065989
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.5580348324082148
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.5609705433942662
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.5664835460503455
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full es
          type: full_es
        metrics:
          - type: cosine_accuracy@1
            value: 0.12432432432432433
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 1
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 1
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 1
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 1
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 1
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.12432432432432433
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5718918918918918
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.38832432432432434
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.25135135135135134
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.1886486486486487
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.15083783783783786
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.0036542148230633313
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.3813088657975513
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.5589819018381946
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.6712879484837694
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.7296378671854172
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.7646529145750729
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.12432432432432433
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6162786673767947
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5875500387824142
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.6146487956773306
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.6449661586574366
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.6628313427507618
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.12432432432432433
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.5585585585585586
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.5585585585585586
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.5585585585585586
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.5585585585585586
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.5585585585585586
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.12432432432432433
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.4830935685993706
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.4268637780839156
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.43032040469750343
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.4449589410699155
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.4523102942291434
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.4643631946508736
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full de
          type: full_de
        metrics:
          - type: cosine_accuracy@1
            value: 0.2955665024630542
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9753694581280788
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9852216748768473
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9852216748768473
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9901477832512315
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9901477832512315
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.2955665024630542
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5399014778325123
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.3829556650246305
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.25098522167487686
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.18742200328407224
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.14911330049261085
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.01108543831680986
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.33926725064737134
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.5319613376214742
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.6497082600959269
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.7094703332321319
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.7445597670438818
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.2955665024630542
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.5621043185251402
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5505636839954736
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.5784375922614946
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.6091764880384499
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.6263384735475871
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.2955665024630542
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.5127296895769795
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.5130763416477695
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.5130763416477695
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.5131188080992728
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.5131188080992728
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.2955665024630542
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.42085554479107096
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.3779379416896035
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.38163165810143573
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.3961646378244818
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.40295816570523324
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.4167002568710484
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full zh
          type: full_zh
        metrics:
          - type: cosine_accuracy@1
            value: 0.6407766990291263
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9902912621359223
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9902912621359223
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9902912621359223
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9902912621359223
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9902912621359223
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6407766990291263
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.46504854368932047
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.27611650485436895
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.17097087378640777
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.12291262135922332
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.0969417475728155
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.05744396078263393
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.4978573021507442
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.6611813069264482
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.7796553453979224
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.8271677009796732
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.8637730394316714
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6407766990291263
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6374339653798218
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.6458466090741598
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7026844413104963
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7238302410564206
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7383757321568225
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6407766990291263
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7983818770226538
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7983818770226538
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.7983818770226538
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7983818770226538
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7983818770226538
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6407766990291263
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.4902515378001179
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.46828607843970593
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.49742002930709256
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.5055517135202557
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.5100267276205871
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.5152273086702759
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix es
          type: mix_es
        metrics:
          - type: cosine_accuracy@1
            value: 0.7358294331773271
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9625585023400937
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9802392095683827
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9927197087883516
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9947997919916797
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9958398335933437
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.7358294331773271
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.12438897555902236
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.05158606344253771
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.026224648985959446
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.017628705148205928
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.013268330733229333
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.28403164698016486
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.9190414283237995
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.952244756456925
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.9685820766163981
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.9762870514820593
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9801872074882996
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.7358294331773271
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.8089516774866639
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.8181299102768375
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.8217009899252086
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.8232345422421572
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.8239096085290897
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.7358294331773271
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.8035232306901704
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.8041564269676074
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.8043491602665708
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.8043649132860833
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.8043707455995762
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.7358294331773271
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.7407296211762635
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.7433011890905112
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.7437599072934008
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.7439220951644092
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.7439677461223776
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.7440630263326289
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix de
          type: mix_de
        metrics:
          - type: cosine_accuracy@1
            value: 0.6947477899115965
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.967758710348414
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.984399375975039
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9901196047841914
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9932397295891836
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9932397295891836
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6947477899115965
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.12769110764430577
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.05316692667706709
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.026978679147165893
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.018082856647599233
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.013595943837753513
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.26064309239036226
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.9266163979892529
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.9632518634078697
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.9771190847633905
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.982232622638239
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.984659386375455
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6947477899115965
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.7916550876560119
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.8018356667177752
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.8049830038156018
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.8060041518104935
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.8064526867706615
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6947477899115965
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.775106319970792
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7756762344136855
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.7757636235577245
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7757917238264626
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7757917238264626
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6947477899115965
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.7123386461179687
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.7151736057555711
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.7156740227134941
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.7157705885677804
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.7158097678043102
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.7158747359338941
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix zh
          type: mix_zh
        metrics:
          - type: cosine_accuracy@1
            value: 0.1814872594903796
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 1
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 1
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 1
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 1
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 1
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.1814872594903796
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.15439417576703063
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.0617576703068123
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.03087883515340615
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.020585890102270757
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.015439417576703075
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.058722729861575416
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 1
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 1
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 1
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 1
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 1
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.1814872594903796
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.5447038314336347
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5447038314336347
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.5447038314336347
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.5447038314336347
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.5447038314336347
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.1814872594903796
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.40366659543726713
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.40366659543726713
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.40366659543726713
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.40366659543726713
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.40366659543726713
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.1814872594903796
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.32665499722442
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.32665499722442
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.32665499722442
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.32665499722442
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.32665499722442
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.32665499722442
            name: Cosine Map@500

SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3 on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • full_en
    • full_de
    • full_es
    • full_zh
    • mix

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric full_en full_es full_de full_zh mix_es mix_de mix_zh
cosine_accuracy@1 0.6476 0.1243 0.2956 0.6408 0.7358 0.6947 0.1815
cosine_accuracy@20 0.9905 1.0 0.9754 0.9903 0.9626 0.9678 1.0
cosine_accuracy@50 0.9905 1.0 0.9852 0.9903 0.9802 0.9844 1.0
cosine_accuracy@100 0.9905 1.0 0.9852 0.9903 0.9927 0.9901 1.0
cosine_accuracy@150 0.9905 1.0 0.9901 0.9903 0.9948 0.9932 1.0
cosine_accuracy@200 0.9905 1.0 0.9901 0.9903 0.9958 0.9932 1.0
cosine_precision@1 0.6476 0.1243 0.2956 0.6408 0.7358 0.6947 0.1815
cosine_precision@20 0.499 0.5719 0.5399 0.465 0.1244 0.1277 0.1544
cosine_precision@50 0.3027 0.3883 0.383 0.2761 0.0516 0.0532 0.0618
cosine_precision@100 0.1845 0.2514 0.251 0.171 0.0262 0.027 0.0309
cosine_precision@150 0.1316 0.1886 0.1874 0.1229 0.0176 0.0181 0.0206
cosine_precision@200 0.1017 0.1508 0.1491 0.0969 0.0133 0.0136 0.0154
cosine_recall@1 0.0669 0.0037 0.0111 0.0574 0.284 0.2606 0.0587
cosine_recall@20 0.5288 0.3813 0.3393 0.4979 0.919 0.9266 1.0
cosine_recall@50 0.7129 0.559 0.532 0.6612 0.9522 0.9633 1.0
cosine_recall@100 0.8216 0.6713 0.6497 0.7797 0.9686 0.9771 1.0
cosine_recall@150 0.8669 0.7296 0.7095 0.8272 0.9763 0.9822 1.0
cosine_recall@200 0.8882 0.7647 0.7446 0.8638 0.9802 0.9847 1.0
cosine_ndcg@1 0.6476 0.1243 0.2956 0.6408 0.7358 0.6947 0.1815
cosine_ndcg@20 0.6737 0.6163 0.5621 0.6374 0.809 0.7917 0.5447
cosine_ndcg@50 0.6897 0.5876 0.5506 0.6458 0.8181 0.8018 0.5447
cosine_ndcg@100 0.7455 0.6146 0.5784 0.7027 0.8217 0.805 0.5447
cosine_ndcg@150 0.7658 0.645 0.6092 0.7238 0.8232 0.806 0.5447
cosine_ndcg@200 0.7747 0.6628 0.6263 0.7384 0.8239 0.8065 0.5447
cosine_mrr@1 0.6476 0.1243 0.2956 0.6408 0.7358 0.6947 0.1815
cosine_mrr@20 0.7969 0.5586 0.5127 0.7984 0.8035 0.7751 0.4037
cosine_mrr@50 0.7969 0.5586 0.5131 0.7984 0.8042 0.7757 0.4037
cosine_mrr@100 0.7969 0.5586 0.5131 0.7984 0.8043 0.7758 0.4037
cosine_mrr@150 0.7969 0.5586 0.5131 0.7984 0.8044 0.7758 0.4037
cosine_mrr@200 0.7969 0.5586 0.5131 0.7984 0.8044 0.7758 0.4037
cosine_map@1 0.6476 0.1243 0.2956 0.6408 0.7358 0.6947 0.1815
cosine_map@20 0.5299 0.4831 0.4209 0.4903 0.7407 0.7123 0.3267
cosine_map@50 0.517 0.4269 0.3779 0.4683 0.7433 0.7152 0.3267
cosine_map@100 0.5496 0.4303 0.3816 0.4974 0.7438 0.7157 0.3267
cosine_map@150 0.558 0.445 0.3962 0.5056 0.7439 0.7158 0.3267
cosine_map@200 0.561 0.4523 0.403 0.51 0.744 0.7158 0.3267
cosine_map@500 0.5665 0.4644 0.4167 0.5152 0.7441 0.7159 0.3267

Training Details

Training Datasets

full_en

full_en

  • Dataset: full_en
  • Size: 28,880 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 5.68 tokens
    • max: 11 tokens
    • min: 3 tokens
    • mean: 5.76 tokens
    • max: 12 tokens
  • Samples:
    anchor positive
    air commodore flight lieutenant
    command and control officer flight officer
    air commodore command and control officer
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_de

full_de

  • Dataset: full_de
  • Size: 23,023 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 7.99 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.19 tokens
    • max: 30 tokens
  • Samples:
    anchor positive
    Staffelkommandantin Kommodore
    Luftwaffenoffizierin Luftwaffenoffizier/Luftwaffenoffizierin
    Staffelkommandantin Luftwaffenoffizierin
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_es

full_es

  • Dataset: full_es
  • Size: 20,724 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 9.13 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.84 tokens
    • max: 32 tokens
  • Samples:
    anchor positive
    jefe de escuadrón instructor
    comandante de aeronave instructor de simulador
    instructor oficial del Ejército del Aire
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_zh

full_zh

  • Dataset: full_zh
  • Size: 30,401 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 7.15 tokens
    • max: 14 tokens
    • min: 5 tokens
    • mean: 7.46 tokens
    • max: 21 tokens
  • Samples:
    anchor positive
    技术总监 技术和运营总监
    技术总监 技术主管
    技术总监 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
mix

mix

  • Dataset: mix
  • Size: 21,760 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 6.71 tokens
    • max: 19 tokens
    • min: 2 tokens
    • mean: 7.69 tokens
    • max: 19 tokens
  • Samples:
    anchor positive
    technical manager Technischer Direktor für Bühne, Film und Fernsehen
    head of technical directora técnica
    head of technical department 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • num_train_epochs: 5
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • ddp_find_unused_parameters: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss full_en_cosine_ndcg@200 full_es_cosine_ndcg@200 full_de_cosine_ndcg@200 full_zh_cosine_ndcg@200 mix_es_cosine_ndcg@200 mix_de_cosine_ndcg@200 mix_zh_cosine_ndcg@200
-1 -1 - 0.6856 0.5207 0.4655 0.6713 0.6224 0.5604 0.5548
0.0010 1 5.3354 - - - - - - -
0.1027 100 2.665 - - - - - - -
0.2053 200 1.3375 0.7691 0.6530 0.6298 0.7517 0.7513 0.7393 0.5490
0.3080 300 1.1101 - - - - - - -
0.4107 400 0.9453 0.7802 0.6643 0.6246 0.7531 0.7610 0.7441 0.5493
0.5133 500 0.9202 - - - - - - -
0.6160 600 0.7887 0.7741 0.6549 0.6171 0.7542 0.7672 0.7540 0.5482
0.7187 700 0.7604 - - - - - - -
0.8214 800 0.7219 0.7846 0.6674 0.6244 0.7648 0.7741 0.7592 0.5497
0.9240 900 0.6965 - - - - - - -
1.0267 1000 0.6253 0.7646 0.6391 0.6122 0.7503 0.7825 0.7704 0.5463
1.1294 1100 0.4737 - - - - - - -
1.2320 1200 0.5055 0.7758 0.6582 0.6178 0.7514 0.7857 0.7764 0.5501
1.3347 1300 0.5042 - - - - - - -
1.4374 1400 0.5073 0.7613 0.6578 0.6178 0.7505 0.7829 0.7762 0.5452
1.5400 1500 0.4975 - - - - - - -
1.6427 1600 0.5242 0.7736 0.6673 0.6279 0.7555 0.7940 0.7859 0.5477
1.7454 1700 0.4713 - - - - - - -
1.8480 1800 0.4814 0.7845 0.6733 0.6285 0.7642 0.7992 0.7904 0.5449
1.9507 1900 0.4526 - - - - - - -
2.0544 2000 0.36 0.7790 0.6639 0.6252 0.7500 0.8032 0.7888 0.5499
2.1571 2100 0.3744 - - - - - - -
2.2598 2200 0.3031 0.7787 0.6614 0.6190 0.7537 0.7993 0.7811 0.5476
2.3624 2300 0.3638 - - - - - - -
2.4651 2400 0.358 0.7798 0.6615 0.6258 0.7497 0.8018 0.7828 0.5481
2.5678 2500 0.3247 - - - - - - -
2.6704 2600 0.3247 0.7854 0.6663 0.6248 0.7560 0.8081 0.7835 0.5452
2.7731 2700 0.3263 - - - - - - -
2.8758 2800 0.3212 0.7761 0.6681 0.6250 0.7517 0.8121 0.7927 0.5458
2.9784 2900 0.3291 - - - - - - -
3.0821 3000 0.2816 0.7727 0.6604 0.6163 0.7370 0.8163 0.7985 0.5473
3.1848 3100 0.2698 - - - - - - -
3.2875 3200 0.2657 0.7757 0.6615 0.6247 0.7417 0.8117 0.8004 0.5436
3.3901 3300 0.2724 - - - - - - -
3.4928 3400 0.2584 0.7850 0.6583 0.6320 0.7458 0.8120 0.7980 0.5454
3.5955 3500 0.2573 - - - - - - -
3.6982 3600 0.2744 0.7796 0.6552 0.6237 0.7409 0.8193 0.8018 0.5466
3.8008 3700 0.3054 - - - - - - -
3.9035 3800 0.2727 0.7825 0.6642 0.6293 0.7504 0.8213 0.8058 0.5463
4.0062 3900 0.2353 - - - - - - -
4.1088 4000 0.2353 0.7747 0.6628 0.6263 0.7384 0.8239 0.8065 0.5447

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}