|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:124788 |
|
|
- loss:GISTEmbedLoss |
|
|
base_model: BAAI/bge-m3 |
|
|
widget: |
|
|
- source_sentence: 其他机械、设备和有形货物租赁服务代表 |
|
|
sentences: |
|
|
- 其他机械和设备租赁服务工作人员 |
|
|
- 电子和电信设备及零部件物流经理 |
|
|
- 工业主厨 |
|
|
- source_sentence: 公交车司机 |
|
|
sentences: |
|
|
- 表演灯光设计师 |
|
|
- 乙烯基地板安装工 |
|
|
- 国际巴士司机 |
|
|
- source_sentence: online communication manager |
|
|
sentences: |
|
|
- trades union official |
|
|
- social media manager |
|
|
- budget manager |
|
|
- source_sentence: Projektmanagerin |
|
|
sentences: |
|
|
- Projektmanager/Projektmanagerin |
|
|
- Category-Manager |
|
|
- Infanterist |
|
|
- source_sentence: Volksvertreter |
|
|
sentences: |
|
|
- Parlamentarier |
|
|
- Oberbürgermeister |
|
|
- Konsul |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_accuracy@20 |
|
|
- cosine_accuracy@50 |
|
|
- cosine_accuracy@100 |
|
|
- cosine_accuracy@150 |
|
|
- cosine_accuracy@200 |
|
|
- cosine_precision@1 |
|
|
- cosine_precision@20 |
|
|
- cosine_precision@50 |
|
|
- cosine_precision@100 |
|
|
- cosine_precision@150 |
|
|
- cosine_precision@200 |
|
|
- cosine_recall@1 |
|
|
- cosine_recall@20 |
|
|
- cosine_recall@50 |
|
|
- cosine_recall@100 |
|
|
- cosine_recall@150 |
|
|
- cosine_recall@200 |
|
|
- cosine_ndcg@1 |
|
|
- cosine_ndcg@20 |
|
|
- cosine_ndcg@50 |
|
|
- cosine_ndcg@100 |
|
|
- cosine_ndcg@150 |
|
|
- cosine_ndcg@200 |
|
|
- cosine_mrr@1 |
|
|
- cosine_mrr@20 |
|
|
- cosine_mrr@50 |
|
|
- cosine_mrr@100 |
|
|
- cosine_mrr@150 |
|
|
- cosine_mrr@200 |
|
|
- cosine_map@1 |
|
|
- cosine_map@20 |
|
|
- cosine_map@50 |
|
|
- cosine_map@100 |
|
|
- cosine_map@150 |
|
|
- cosine_map@200 |
|
|
- cosine_map@500 |
|
|
model-index: |
|
|
- name: SentenceTransformer based on BAAI/bge-m3 |
|
|
results: |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full en |
|
|
type: full_en |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.499047619047619 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.30266666666666664 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.18447619047619046 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.13155555555555554 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.10171428571428573 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.06690172806447445 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.5288155255988508 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.7128731386766649 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.821589853989195 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.8669290529739844 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.8881772271562451 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6737021289484512 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.6897381539459008 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.7455379155828873 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.7657730626526685 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.7746920852324353 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.7969444444444443 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.7969444444444443 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.7969444444444443 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.7969444444444443 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.7969444444444443 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.5299368408688423 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.5170402457535271 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.549577105065989 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.5580348324082148 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.5609705433942662 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.5664835460503455 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full es |
|
|
type: full_es |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.5718918918918918 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.38832432432432434 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.25135135135135134 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.1886486486486487 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.15083783783783786 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.0036542148230633313 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.3813088657975513 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.5589819018381946 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.6712879484837694 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.7296378671854172 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.7646529145750729 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6162786673767947 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5875500387824142 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.6146487956773306 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.6449661586574366 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.6628313427507618 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.5585585585585586 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.5585585585585586 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.5585585585585586 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.5585585585585586 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.5585585585585586 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.4830935685993706 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.4268637780839156 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.43032040469750343 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.4449589410699155 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.4523102942291434 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.4643631946508736 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full de |
|
|
type: full_de |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9753694581280788 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9852216748768473 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9852216748768473 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9901477832512315 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9901477832512315 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.5399014778325123 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.3829556650246305 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.25098522167487686 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.18742200328407224 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.14911330049261085 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.01108543831680986 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.33926725064737134 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.5319613376214742 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.6497082600959269 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.7094703332321319 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.7445597670438818 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.5621043185251402 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5505636839954736 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.5784375922614946 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.6091764880384499 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.6263384735475871 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.5127296895769795 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.5130763416477695 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.5130763416477695 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.5131188080992728 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.5131188080992728 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.42085554479107096 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.3779379416896035 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.38163165810143573 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.3961646378244818 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.40295816570523324 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.4167002568710484 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full zh |
|
|
type: full_zh |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6407766990291263 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6407766990291263 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.46504854368932047 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.27611650485436895 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.17097087378640777 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.12291262135922332 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.0969417475728155 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.05744396078263393 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.4978573021507442 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.6611813069264482 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.7796553453979224 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.8271677009796732 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.8637730394316714 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6407766990291263 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6374339653798218 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.6458466090741598 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.7026844413104963 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.7238302410564206 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.7383757321568225 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6407766990291263 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.7983818770226538 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.7983818770226538 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.7983818770226538 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.7983818770226538 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.7983818770226538 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6407766990291263 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.4902515378001179 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.46828607843970593 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.49742002930709256 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.5055517135202557 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.5100267276205871 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.5152273086702759 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix es |
|
|
type: mix_es |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.7358294331773271 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9625585023400937 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9802392095683827 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9927197087883516 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9947997919916797 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9958398335933437 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.7358294331773271 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.12438897555902236 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.05158606344253771 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.026224648985959446 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.017628705148205928 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.013268330733229333 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.28403164698016486 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.9190414283237995 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.952244756456925 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.9685820766163981 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.9762870514820593 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.9801872074882996 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.7358294331773271 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.8089516774866639 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.8181299102768375 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.8217009899252086 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.8232345422421572 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.8239096085290897 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.7358294331773271 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.8035232306901704 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.8041564269676074 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.8043491602665708 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.8043649132860833 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.8043707455995762 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.7358294331773271 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.7407296211762635 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.7433011890905112 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.7437599072934008 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.7439220951644092 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.7439677461223776 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.7440630263326289 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix de |
|
|
type: mix_de |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6947477899115965 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.967758710348414 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.984399375975039 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9901196047841914 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9932397295891836 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9932397295891836 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6947477899115965 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.12769110764430577 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.05316692667706709 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.026978679147165893 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.018082856647599233 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.013595943837753513 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.26064309239036226 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.9266163979892529 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.9632518634078697 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.9771190847633905 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.982232622638239 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.984659386375455 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6947477899115965 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.7916550876560119 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.8018356667177752 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.8049830038156018 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.8060041518104935 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.8064526867706615 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6947477899115965 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.775106319970792 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.7756762344136855 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.7757636235577245 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.7757917238264626 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.7757917238264626 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6947477899115965 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.7123386461179687 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.7151736057555711 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.7156740227134941 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.7157705885677804 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.7158097678043102 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.7158747359338941 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix zh |
|
|
type: mix_zh |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.1814872594903796 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.1814872594903796 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.15439417576703063 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.0617576703068123 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.03087883515340615 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.020585890102270757 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.015439417576703075 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.058722729861575416 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.1814872594903796 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.5447038314336347 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5447038314336347 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.5447038314336347 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.5447038314336347 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.5447038314336347 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.1814872594903796 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.40366659543726713 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.40366659543726713 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.40366659543726713 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.40366659543726713 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.40366659543726713 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.1814872594903796 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.32665499722442 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.32665499722442 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.32665499722442 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.32665499722442 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.32665499722442 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.32665499722442 |
|
|
name: Cosine Map@500 |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on BAAI/bge-m3 |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Output Dimensionality:** 1024 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Datasets:** |
|
|
- full_en |
|
|
- full_de |
|
|
- full_es |
|
|
- full_zh |
|
|
- mix |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'Volksvertreter', |
|
|
'Parlamentarier', |
|
|
'Oberbürgermeister', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 1024] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
|
|
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |
|
|
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| |
|
|
| cosine_accuracy@1 | 0.6476 | 0.1243 | 0.2956 | 0.6408 | 0.7358 | 0.6947 | 0.1815 | |
|
|
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9754 | 0.9903 | 0.9626 | 0.9678 | 1.0 | |
|
|
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9802 | 0.9844 | 1.0 | |
|
|
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9927 | 0.9901 | 1.0 | |
|
|
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9948 | 0.9932 | 1.0 | |
|
|
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9932 | 1.0 | |
|
|
| cosine_precision@1 | 0.6476 | 0.1243 | 0.2956 | 0.6408 | 0.7358 | 0.6947 | 0.1815 | |
|
|
| cosine_precision@20 | 0.499 | 0.5719 | 0.5399 | 0.465 | 0.1244 | 0.1277 | 0.1544 | |
|
|
| cosine_precision@50 | 0.3027 | 0.3883 | 0.383 | 0.2761 | 0.0516 | 0.0532 | 0.0618 | |
|
|
| cosine_precision@100 | 0.1845 | 0.2514 | 0.251 | 0.171 | 0.0262 | 0.027 | 0.0309 | |
|
|
| cosine_precision@150 | 0.1316 | 0.1886 | 0.1874 | 0.1229 | 0.0176 | 0.0181 | 0.0206 | |
|
|
| cosine_precision@200 | 0.1017 | 0.1508 | 0.1491 | 0.0969 | 0.0133 | 0.0136 | 0.0154 | |
|
|
| cosine_recall@1 | 0.0669 | 0.0037 | 0.0111 | 0.0574 | 0.284 | 0.2606 | 0.0587 | |
|
|
| cosine_recall@20 | 0.5288 | 0.3813 | 0.3393 | 0.4979 | 0.919 | 0.9266 | 1.0 | |
|
|
| cosine_recall@50 | 0.7129 | 0.559 | 0.532 | 0.6612 | 0.9522 | 0.9633 | 1.0 | |
|
|
| cosine_recall@100 | 0.8216 | 0.6713 | 0.6497 | 0.7797 | 0.9686 | 0.9771 | 1.0 | |
|
|
| cosine_recall@150 | 0.8669 | 0.7296 | 0.7095 | 0.8272 | 0.9763 | 0.9822 | 1.0 | |
|
|
| cosine_recall@200 | 0.8882 | 0.7647 | 0.7446 | 0.8638 | 0.9802 | 0.9847 | 1.0 | |
|
|
| cosine_ndcg@1 | 0.6476 | 0.1243 | 0.2956 | 0.6408 | 0.7358 | 0.6947 | 0.1815 | |
|
|
| cosine_ndcg@20 | 0.6737 | 0.6163 | 0.5621 | 0.6374 | 0.809 | 0.7917 | 0.5447 | |
|
|
| cosine_ndcg@50 | 0.6897 | 0.5876 | 0.5506 | 0.6458 | 0.8181 | 0.8018 | 0.5447 | |
|
|
| cosine_ndcg@100 | 0.7455 | 0.6146 | 0.5784 | 0.7027 | 0.8217 | 0.805 | 0.5447 | |
|
|
| cosine_ndcg@150 | 0.7658 | 0.645 | 0.6092 | 0.7238 | 0.8232 | 0.806 | 0.5447 | |
|
|
| **cosine_ndcg@200** | **0.7747** | **0.6628** | **0.6263** | **0.7384** | **0.8239** | **0.8065** | **0.5447** | |
|
|
| cosine_mrr@1 | 0.6476 | 0.1243 | 0.2956 | 0.6408 | 0.7358 | 0.6947 | 0.1815 | |
|
|
| cosine_mrr@20 | 0.7969 | 0.5586 | 0.5127 | 0.7984 | 0.8035 | 0.7751 | 0.4037 | |
|
|
| cosine_mrr@50 | 0.7969 | 0.5586 | 0.5131 | 0.7984 | 0.8042 | 0.7757 | 0.4037 | |
|
|
| cosine_mrr@100 | 0.7969 | 0.5586 | 0.5131 | 0.7984 | 0.8043 | 0.7758 | 0.4037 | |
|
|
| cosine_mrr@150 | 0.7969 | 0.5586 | 0.5131 | 0.7984 | 0.8044 | 0.7758 | 0.4037 | |
|
|
| cosine_mrr@200 | 0.7969 | 0.5586 | 0.5131 | 0.7984 | 0.8044 | 0.7758 | 0.4037 | |
|
|
| cosine_map@1 | 0.6476 | 0.1243 | 0.2956 | 0.6408 | 0.7358 | 0.6947 | 0.1815 | |
|
|
| cosine_map@20 | 0.5299 | 0.4831 | 0.4209 | 0.4903 | 0.7407 | 0.7123 | 0.3267 | |
|
|
| cosine_map@50 | 0.517 | 0.4269 | 0.3779 | 0.4683 | 0.7433 | 0.7152 | 0.3267 | |
|
|
| cosine_map@100 | 0.5496 | 0.4303 | 0.3816 | 0.4974 | 0.7438 | 0.7157 | 0.3267 | |
|
|
| cosine_map@150 | 0.558 | 0.445 | 0.3962 | 0.5056 | 0.7439 | 0.7158 | 0.3267 | |
|
|
| cosine_map@200 | 0.561 | 0.4523 | 0.403 | 0.51 | 0.744 | 0.7158 | 0.3267 | |
|
|
| cosine_map@500 | 0.5665 | 0.4644 | 0.4167 | 0.5152 | 0.7441 | 0.7159 | 0.3267 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Datasets |
|
|
<details><summary>full_en</summary> |
|
|
|
|
|
#### full_en |
|
|
|
|
|
* Dataset: full_en |
|
|
* Size: 28,880 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:-----------------------------------------|:-----------------------------------------| |
|
|
| <code>air commodore</code> | <code>flight lieutenant</code> | |
|
|
| <code>command and control officer</code> | <code>flight officer</code> | |
|
|
| <code>air commodore</code> | <code>command and control officer</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_de</summary> |
|
|
|
|
|
#### full_de |
|
|
|
|
|
* Dataset: full_de |
|
|
* Size: 23,023 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:----------------------------------|:-----------------------------------------------------| |
|
|
| <code>Staffelkommandantin</code> | <code>Kommodore</code> | |
|
|
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | |
|
|
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_es</summary> |
|
|
|
|
|
#### full_es |
|
|
|
|
|
* Dataset: full_es |
|
|
* Size: 20,724 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------------------------|:-------------------------------------------| |
|
|
| <code>jefe de escuadrón</code> | <code>instructor</code> | |
|
|
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> | |
|
|
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_zh</summary> |
|
|
|
|
|
#### full_zh |
|
|
|
|
|
* Dataset: full_zh |
|
|
* Size: 30,401 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------|:---------------------| |
|
|
| <code>技术总监</code> | <code>技术和运营总监</code> | |
|
|
| <code>技术总监</code> | <code>技术主管</code> | |
|
|
| <code>技术总监</code> | <code>技术艺术总监</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>mix</summary> |
|
|
|
|
|
#### mix |
|
|
|
|
|
* Dataset: mix |
|
|
* Size: 21,760 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------------------------------|:----------------------------------------------------------------| |
|
|
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> | |
|
|
| <code>head of technical</code> | <code>directora técnica</code> | |
|
|
| <code>head of technical department</code> | <code>技术艺术总监</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `gradient_accumulation_steps`: 2 |
|
|
- `num_train_epochs`: 5 |
|
|
- `warmup_ratio`: 0.05 |
|
|
- `log_on_each_node`: False |
|
|
- `fp16`: True |
|
|
- `dataloader_num_workers`: 4 |
|
|
- `ddp_find_unused_parameters`: True |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 2 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 5 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.05 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: False |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: True |
|
|
- `dataloader_num_workers`: 4 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `tp_size`: 0 |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: True |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |
|
|
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| |
|
|
| -1 | -1 | - | 0.6856 | 0.5207 | 0.4655 | 0.6713 | 0.6224 | 0.5604 | 0.5548 | |
|
|
| 0.0010 | 1 | 5.3354 | - | - | - | - | - | - | - | |
|
|
| 0.1027 | 100 | 2.665 | - | - | - | - | - | - | - | |
|
|
| 0.2053 | 200 | 1.3375 | 0.7691 | 0.6530 | 0.6298 | 0.7517 | 0.7513 | 0.7393 | 0.5490 | |
|
|
| 0.3080 | 300 | 1.1101 | - | - | - | - | - | - | - | |
|
|
| 0.4107 | 400 | 0.9453 | 0.7802 | 0.6643 | 0.6246 | 0.7531 | 0.7610 | 0.7441 | 0.5493 | |
|
|
| 0.5133 | 500 | 0.9202 | - | - | - | - | - | - | - | |
|
|
| 0.6160 | 600 | 0.7887 | 0.7741 | 0.6549 | 0.6171 | 0.7542 | 0.7672 | 0.7540 | 0.5482 | |
|
|
| 0.7187 | 700 | 0.7604 | - | - | - | - | - | - | - | |
|
|
| 0.8214 | 800 | 0.7219 | 0.7846 | 0.6674 | 0.6244 | 0.7648 | 0.7741 | 0.7592 | 0.5497 | |
|
|
| 0.9240 | 900 | 0.6965 | - | - | - | - | - | - | - | |
|
|
| 1.0267 | 1000 | 0.6253 | 0.7646 | 0.6391 | 0.6122 | 0.7503 | 0.7825 | 0.7704 | 0.5463 | |
|
|
| 1.1294 | 1100 | 0.4737 | - | - | - | - | - | - | - | |
|
|
| 1.2320 | 1200 | 0.5055 | 0.7758 | 0.6582 | 0.6178 | 0.7514 | 0.7857 | 0.7764 | 0.5501 | |
|
|
| 1.3347 | 1300 | 0.5042 | - | - | - | - | - | - | - | |
|
|
| 1.4374 | 1400 | 0.5073 | 0.7613 | 0.6578 | 0.6178 | 0.7505 | 0.7829 | 0.7762 | 0.5452 | |
|
|
| 1.5400 | 1500 | 0.4975 | - | - | - | - | - | - | - | |
|
|
| 1.6427 | 1600 | 0.5242 | 0.7736 | 0.6673 | 0.6279 | 0.7555 | 0.7940 | 0.7859 | 0.5477 | |
|
|
| 1.7454 | 1700 | 0.4713 | - | - | - | - | - | - | - | |
|
|
| 1.8480 | 1800 | 0.4814 | 0.7845 | 0.6733 | 0.6285 | 0.7642 | 0.7992 | 0.7904 | 0.5449 | |
|
|
| 1.9507 | 1900 | 0.4526 | - | - | - | - | - | - | - | |
|
|
| 2.0544 | 2000 | 0.36 | 0.7790 | 0.6639 | 0.6252 | 0.7500 | 0.8032 | 0.7888 | 0.5499 | |
|
|
| 2.1571 | 2100 | 0.3744 | - | - | - | - | - | - | - | |
|
|
| 2.2598 | 2200 | 0.3031 | 0.7787 | 0.6614 | 0.6190 | 0.7537 | 0.7993 | 0.7811 | 0.5476 | |
|
|
| 2.3624 | 2300 | 0.3638 | - | - | - | - | - | - | - | |
|
|
| 2.4651 | 2400 | 0.358 | 0.7798 | 0.6615 | 0.6258 | 0.7497 | 0.8018 | 0.7828 | 0.5481 | |
|
|
| 2.5678 | 2500 | 0.3247 | - | - | - | - | - | - | - | |
|
|
| 2.6704 | 2600 | 0.3247 | 0.7854 | 0.6663 | 0.6248 | 0.7560 | 0.8081 | 0.7835 | 0.5452 | |
|
|
| 2.7731 | 2700 | 0.3263 | - | - | - | - | - | - | - | |
|
|
| 2.8758 | 2800 | 0.3212 | 0.7761 | 0.6681 | 0.6250 | 0.7517 | 0.8121 | 0.7927 | 0.5458 | |
|
|
| 2.9784 | 2900 | 0.3291 | - | - | - | - | - | - | - | |
|
|
| 3.0821 | 3000 | 0.2816 | 0.7727 | 0.6604 | 0.6163 | 0.7370 | 0.8163 | 0.7985 | 0.5473 | |
|
|
| 3.1848 | 3100 | 0.2698 | - | - | - | - | - | - | - | |
|
|
| 3.2875 | 3200 | 0.2657 | 0.7757 | 0.6615 | 0.6247 | 0.7417 | 0.8117 | 0.8004 | 0.5436 | |
|
|
| 3.3901 | 3300 | 0.2724 | - | - | - | - | - | - | - | |
|
|
| 3.4928 | 3400 | 0.2584 | 0.7850 | 0.6583 | 0.6320 | 0.7458 | 0.8120 | 0.7980 | 0.5454 | |
|
|
| 3.5955 | 3500 | 0.2573 | - | - | - | - | - | - | - | |
|
|
| 3.6982 | 3600 | 0.2744 | 0.7796 | 0.6552 | 0.6237 | 0.7409 | 0.8193 | 0.8018 | 0.5466 | |
|
|
| 3.8008 | 3700 | 0.3054 | - | - | - | - | - | - | - | |
|
|
| 3.9035 | 3800 | 0.2727 | 0.7825 | 0.6642 | 0.6293 | 0.7504 | 0.8213 | 0.8058 | 0.5463 | |
|
|
| 4.0062 | 3900 | 0.2353 | - | - | - | - | - | - | - | |
|
|
| 4.1088 | 4000 | 0.2353 | 0.7747 | 0.6628 | 0.6263 | 0.7384 | 0.8239 | 0.8065 | 0.5447 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.11 |
|
|
- Sentence Transformers: 4.1.0 |
|
|
- Transformers: 4.51.2 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.6.0 |
|
|
- Datasets: 3.5.0 |
|
|
- Tokenizers: 0.21.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### GISTEmbedLoss |
|
|
```bibtex |
|
|
@misc{solatorio2024gistembed, |
|
|
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, |
|
|
author={Aivin V. Solatorio}, |
|
|
year={2024}, |
|
|
eprint={2402.16829}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.LG} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |