|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:124788 |
|
|
- loss:GISTEmbedLoss |
|
|
base_model: Alibaba-NLP/gte-multilingual-base |
|
|
widget: |
|
|
- source_sentence: 其他机械、设备和有形货物租赁服务代表 |
|
|
sentences: |
|
|
- 其他机械和设备租赁服务工作人员 |
|
|
- 电子和电信设备及零部件物流经理 |
|
|
- 工业主厨 |
|
|
- source_sentence: 公交车司机 |
|
|
sentences: |
|
|
- 表演灯光设计师 |
|
|
- 乙烯基地板安装工 |
|
|
- 国际巴士司机 |
|
|
- source_sentence: online communication manager |
|
|
sentences: |
|
|
- trades union official |
|
|
- social media manager |
|
|
- budget manager |
|
|
- source_sentence: Projektmanagerin |
|
|
sentences: |
|
|
- Projektmanager/Projektmanagerin |
|
|
- Category-Manager |
|
|
- Infanterist |
|
|
- source_sentence: Volksvertreter |
|
|
sentences: |
|
|
- Parlamentarier |
|
|
- Oberbürgermeister |
|
|
- Konsul |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_accuracy@20 |
|
|
- cosine_accuracy@50 |
|
|
- cosine_accuracy@100 |
|
|
- cosine_accuracy@150 |
|
|
- cosine_accuracy@200 |
|
|
- cosine_precision@1 |
|
|
- cosine_precision@20 |
|
|
- cosine_precision@50 |
|
|
- cosine_precision@100 |
|
|
- cosine_precision@150 |
|
|
- cosine_precision@200 |
|
|
- cosine_recall@1 |
|
|
- cosine_recall@20 |
|
|
- cosine_recall@50 |
|
|
- cosine_recall@100 |
|
|
- cosine_recall@150 |
|
|
- cosine_recall@200 |
|
|
- cosine_ndcg@1 |
|
|
- cosine_ndcg@20 |
|
|
- cosine_ndcg@50 |
|
|
- cosine_ndcg@100 |
|
|
- cosine_ndcg@150 |
|
|
- cosine_ndcg@200 |
|
|
- cosine_mrr@1 |
|
|
- cosine_mrr@20 |
|
|
- cosine_mrr@50 |
|
|
- cosine_mrr@100 |
|
|
- cosine_mrr@150 |
|
|
- cosine_mrr@200 |
|
|
- cosine_map@1 |
|
|
- cosine_map@20 |
|
|
- cosine_map@50 |
|
|
- cosine_map@100 |
|
|
- cosine_map@150 |
|
|
- cosine_map@200 |
|
|
- cosine_map@500 |
|
|
model-index: |
|
|
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base |
|
|
results: |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full en |
|
|
type: full_en |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6571428571428571 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6571428571428571 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.5171428571428571 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.316 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.18895238095238095 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.13384126984126984 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.10433333333333335 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.0678253733846715 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.5470006025464504 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.7399645316315758 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.8452891149669638 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.8838497168796887 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.9109269128757174 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6571428571428571 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6953571805621692 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.7150421121165462 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.7679394555495317 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.7856911059911225 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.7969632777290026 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6571428571428571 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.8138095238095239 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.8138095238095239 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.8138095238095239 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.8138095238095239 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.8138095238095239 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6571428571428571 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.5578605627627369 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.5471407389299809 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.5795933384755297 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.5874505508842796 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.5912226659397186 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.5952587557760031 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full es |
|
|
type: full_es |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.5718918918918919 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.3885405405405405 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.25172972972972973 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.1904864864864865 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.1521891891891892 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.0036619075252531876 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.3842245968041533 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.5640822196868902 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.6741986120580108 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.7463851968088967 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.7825399601398452 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6139182209948354 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5873893466818746 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.6144038475288277 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.6498632077214272 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.6680602466150343 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.5581081081081081 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.5581081081081081 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.5581081081081081 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.5581081081081081 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.5581081081081081 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.12432432432432433 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.47988875190050484 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.4249833337950364 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.430155652024808 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.4458862132745998 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.45334655744992447 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.4656066165331343 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full de |
|
|
type: full_de |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9704433497536946 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9852216748768473 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9852216748768473 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9901477832512315 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9901477832512315 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.5083743842364532 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.3654187192118227 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.24133004926108376 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.18036124794745487 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.14467980295566504 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.01108543831680986 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.3221185941380065 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.5024502430161547 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.6247617904371989 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.6829583450315939 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.7216293640715983 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.5393376062142305 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5267125529267169 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.55793511917882 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.5879547828450983 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.6071252185389439 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.5104381157401634 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.5109752961295605 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.5109752961295605 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.5110222114474118 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.5110222114474118 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.40097257642946377 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.35882787401455 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.3633182590941781 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.3776727961080201 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.3848401555555339 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.3978065874082948 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full zh |
|
|
type: full_zh |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6601941747572816 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9805825242718447 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6601941747572816 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.4781553398058253 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.28951456310679613 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.17572815533980585 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.12595469255663433 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.09815533980582528 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.06151358631979527 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.5107966412908705 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.6922746152164951 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.8004152884148357 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.8465065661615649 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.8770990926698364 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6601941747572816 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6539867858378715 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.6707332209240133 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.72342020484322 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.7437750875502527 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.7553648453187212 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6601941747572816 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.8037216828478965 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.8040950958426687 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.8040950958426687 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.8040950958426687 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.8040950958426687 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6601941747572816 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.5087334164702914 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.49260246320797585 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.5217412166882693 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.529859818130126 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.533378795921413 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.5386011712914499 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix es |
|
|
type: mix_es |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.7280291211648466 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9599583983359334 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9791991679667187 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9942797711908476 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9958398335933437 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9973998959958398 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.7280291211648466 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.12433697347893914 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.05145085803432139 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.02625065002600105 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.017621771537528162 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.013283931357254294 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.28133620582918556 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.9183394002426764 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.9499306638932224 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.9700901369388107 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.9767724042295025 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.9818166059975733 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.7280291211648466 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.8043549768911603 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.81295852465432 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.817339429558165 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.8186380742931886 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.8195485984235017 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.7280291211648466 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.7968549154271433 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.7974653825839162 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.7976914864910069 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.7977044635908871 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.7977139196654446 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.7280291211648466 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.7350836192117531 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.7374205090112232 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.737988888492803 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.7381133157945164 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.7381788581828236 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.7382854440643231 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix de |
|
|
type: mix_de |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6703068122724909 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9505980239209568 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9776391055642226 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9864794591783671 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9932397295891836 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9947997919916797 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6703068122724909 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.1251690067602704 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.052282891315652634 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.026729069162766517 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.01799965331946611 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.013541341653666149 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.25235742763043856 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.9095857167620037 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.9482405962905183 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.96845207141619 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.9781591263650546 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.9810192407696308 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6703068122724909 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.7735712514376322 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.7843644592705362 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.7889444470773866 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.7908660087982327 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.791403470160319 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6703068122724909 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.7520307321055828 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.7529374175534339 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.7530616872072472 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.7531202644382351 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.7531293951311296 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6703068122724909 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.6967639778693541 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.699575457224443 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.70027844357658 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.7004487000056766 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.7004863395843564 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.7005835771389989 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix zh |
|
|
type: mix_zh |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.19084763390535622 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.19084763390535622 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.15439417576703063 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.0617576703068123 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.03087883515340615 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.020585890102270757 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.015439417576703075 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.06137978852487433 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.19084763390535622 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.5474303590499686 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5474303590499686 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.5474303590499686 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.5474303590499686 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.5474303590499686 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.19084763390535622 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.4093433087972877 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.4093433087972877 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.4093433087972877 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.4093433087972877 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.4093433087972877 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.19084763390535622 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.32981711891302556 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.32981711891302556 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.32981711891302556 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.32981711891302556 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.32981711891302556 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.32981711891302556 |
|
|
name: Cosine Map@500 |
|
|
--- |
|
|
|
|
|
# Job - Job matching Alibaba-NLP/gte-multilingual-base (v1) |
|
|
|
|
|
Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 --> |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Output Dimensionality:** 768 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Datasets:** |
|
|
- full_en |
|
|
- full_de |
|
|
- full_es |
|
|
- full_zh |
|
|
- mix |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel |
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'Volksvertreter', |
|
|
'Parlamentarier', |
|
|
'Oberbürgermeister', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 768] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
|
|
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |
|
|
|:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| |
|
|
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | |
|
|
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.96 | 0.9506 | 1.0 | |
|
|
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 | |
|
|
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.9865 | 1.0 | |
|
|
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9932 | 1.0 | |
|
|
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 | |
|
|
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | |
|
|
| cosine_precision@20 | 0.5171 | 0.5719 | 0.5084 | 0.4782 | 0.1243 | 0.1252 | 0.1544 | |
|
|
| cosine_precision@50 | 0.316 | 0.3885 | 0.3654 | 0.2895 | 0.0515 | 0.0523 | 0.0618 | |
|
|
| cosine_precision@100 | 0.189 | 0.2517 | 0.2413 | 0.1757 | 0.0263 | 0.0267 | 0.0309 | |
|
|
| cosine_precision@150 | 0.1338 | 0.1905 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 | |
|
|
| cosine_precision@200 | 0.1043 | 0.1522 | 0.1447 | 0.0982 | 0.0133 | 0.0135 | 0.0154 | |
|
|
| cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2813 | 0.2524 | 0.0614 | |
|
|
| cosine_recall@20 | 0.547 | 0.3842 | 0.3221 | 0.5108 | 0.9183 | 0.9096 | 1.0 | |
|
|
| cosine_recall@50 | 0.74 | 0.5641 | 0.5025 | 0.6923 | 0.9499 | 0.9482 | 1.0 | |
|
|
| cosine_recall@100 | 0.8453 | 0.6742 | 0.6248 | 0.8004 | 0.9701 | 0.9685 | 1.0 | |
|
|
| cosine_recall@150 | 0.8838 | 0.7464 | 0.683 | 0.8465 | 0.9768 | 0.9782 | 1.0 | |
|
|
| cosine_recall@200 | 0.9109 | 0.7825 | 0.7216 | 0.8771 | 0.9818 | 0.981 | 1.0 | |
|
|
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | |
|
|
| cosine_ndcg@20 | 0.6954 | 0.6139 | 0.5393 | 0.654 | 0.8044 | 0.7736 | 0.5474 | |
|
|
| cosine_ndcg@50 | 0.715 | 0.5874 | 0.5267 | 0.6707 | 0.813 | 0.7844 | 0.5474 | |
|
|
| cosine_ndcg@100 | 0.7679 | 0.6144 | 0.5579 | 0.7234 | 0.8173 | 0.7889 | 0.5474 | |
|
|
| cosine_ndcg@150 | 0.7857 | 0.6499 | 0.588 | 0.7438 | 0.8186 | 0.7909 | 0.5474 | |
|
|
| **cosine_ndcg@200** | **0.797** | **0.6681** | **0.6071** | **0.7554** | **0.8195** | **0.7914** | **0.5474** | |
|
|
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | |
|
|
| cosine_mrr@20 | 0.8138 | 0.5581 | 0.5104 | 0.8037 | 0.7969 | 0.752 | 0.4093 | |
|
|
| cosine_mrr@50 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7975 | 0.7529 | 0.4093 | |
|
|
| cosine_mrr@100 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | |
|
|
| cosine_mrr@150 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | |
|
|
| cosine_mrr@200 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | |
|
|
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | |
|
|
| cosine_map@20 | 0.5579 | 0.4799 | 0.401 | 0.5087 | 0.7351 | 0.6968 | 0.3298 | |
|
|
| cosine_map@50 | 0.5471 | 0.425 | 0.3588 | 0.4926 | 0.7374 | 0.6996 | 0.3298 | |
|
|
| cosine_map@100 | 0.5796 | 0.4302 | 0.3633 | 0.5217 | 0.738 | 0.7003 | 0.3298 | |
|
|
| cosine_map@150 | 0.5875 | 0.4459 | 0.3777 | 0.5299 | 0.7381 | 0.7004 | 0.3298 | |
|
|
| cosine_map@200 | 0.5912 | 0.4533 | 0.3848 | 0.5334 | 0.7382 | 0.7005 | 0.3298 | |
|
|
| cosine_map@500 | 0.5953 | 0.4656 | 0.3978 | 0.5386 | 0.7383 | 0.7006 | 0.3298 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Datasets |
|
|
<details><summary>full_en</summary> |
|
|
|
|
|
#### full_en |
|
|
|
|
|
* Dataset: full_en |
|
|
* Size: 28,880 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:-----------------------------------------|:-----------------------------------------| |
|
|
| <code>air commodore</code> | <code>flight lieutenant</code> | |
|
|
| <code>command and control officer</code> | <code>flight officer</code> | |
|
|
| <code>air commodore</code> | <code>command and control officer</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_de</summary> |
|
|
|
|
|
#### full_de |
|
|
|
|
|
* Dataset: full_de |
|
|
* Size: 23,023 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:----------------------------------|:-----------------------------------------------------| |
|
|
| <code>Staffelkommandantin</code> | <code>Kommodore</code> | |
|
|
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | |
|
|
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_es</summary> |
|
|
|
|
|
#### full_es |
|
|
|
|
|
* Dataset: full_es |
|
|
* Size: 20,724 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------------------------|:-------------------------------------------| |
|
|
| <code>jefe de escuadrón</code> | <code>instructor</code> | |
|
|
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> | |
|
|
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_zh</summary> |
|
|
|
|
|
#### full_zh |
|
|
|
|
|
* Dataset: full_zh |
|
|
* Size: 30,401 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------|:---------------------| |
|
|
| <code>技术总监</code> | <code>技术和运营总监</code> | |
|
|
| <code>技术总监</code> | <code>技术主管</code> | |
|
|
| <code>技术总监</code> | <code>技术艺术总监</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>mix</summary> |
|
|
|
|
|
#### mix |
|
|
|
|
|
* Dataset: mix |
|
|
* Size: 21,760 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------------------------------|:----------------------------------------------------------------| |
|
|
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> | |
|
|
| <code>head of technical</code> | <code>directora técnica</code> | |
|
|
| <code>head of technical department</code> | <code>技术艺术总监</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `gradient_accumulation_steps`: 2 |
|
|
- `num_train_epochs`: 5 |
|
|
- `warmup_ratio`: 0.05 |
|
|
- `log_on_each_node`: False |
|
|
- `fp16`: True |
|
|
- `dataloader_num_workers`: 4 |
|
|
- `ddp_find_unused_parameters`: True |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 2 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 5 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.05 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: False |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: True |
|
|
- `dataloader_num_workers`: 4 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `tp_size`: 0 |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: True |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |
|
|
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| |
|
|
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 | |
|
|
| 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - | |
|
|
| 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - | |
|
|
| 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 | |
|
|
| 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - | |
|
|
| 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 | |
|
|
| 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - | |
|
|
| 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 | |
|
|
| 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - | |
|
|
| 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 | |
|
|
| 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - | |
|
|
| 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 | |
|
|
| 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - | |
|
|
| 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 | |
|
|
| 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - | |
|
|
| 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 | |
|
|
| 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - | |
|
|
| 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 | |
|
|
| 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - | |
|
|
| 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 | |
|
|
| 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - | |
|
|
| 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 | |
|
|
| 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - | |
|
|
| 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 | |
|
|
| 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - | |
|
|
| 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 | |
|
|
| 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - | |
|
|
| 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 | |
|
|
| 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - | |
|
|
| 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 | |
|
|
| 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - | |
|
|
| 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 | |
|
|
| 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - | |
|
|
| 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 | |
|
|
| 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - | |
|
|
| 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 | |
|
|
| 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - | |
|
|
| 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 | |
|
|
| 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - | |
|
|
| 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 | |
|
|
| 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - | |
|
|
| 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 | |
|
|
| 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - | |
|
|
| 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 | |
|
|
| 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - | |
|
|
| 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 | |
|
|
| 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - | |
|
|
| 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 | |
|
|
| 4.8275 | 4700 | 0.3101 | - | - | - | - | - | - | - | |
|
|
| 4.9302 | 4800 | 0.2524 | 0.7970 | 0.6681 | 0.6071 | 0.7554 | 0.8195 | 0.7914 | 0.5474 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.11 |
|
|
- Sentence Transformers: 4.1.0 |
|
|
- Transformers: 4.51.2 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.6.0 |
|
|
- Datasets: 3.5.0 |
|
|
- Tokenizers: 0.21.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### GISTEmbedLoss |
|
|
```bibtex |
|
|
@misc{solatorio2024gistembed, |
|
|
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, |
|
|
author={Aivin V. Solatorio}, |
|
|
year={2024}, |
|
|
eprint={2402.16829}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.LG} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |