File size: 12,997 Bytes
cf7f9c0
 
 
d041699
caa1927
cf7f9c0
 
 
 
 
 
d041699
 
cf7f9c0
 
 
 
a959b08
cf7f9c0
 
d041699
cf7f9c0
 
 
 
 
 
 
 
32520ec
cf7f9c0
d041699
cf7f9c0
 
 
 
d041699
 
 
 
 
675d3e2
42437d6
45a142d
42437d6
 
 
d4b8273
45a142d
 
 
98ca41e
8adf7c4
d4b8273
 
 
8adf7c4
d4b8273
45a142d
 
42437d6
98ca41e
45a142d
42437d6
45a142d
d4b8273
45a142d
42437d6
98ca41e
 
 
 
d4b8273
 
 
 
 
 
 
45a142d
 
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d041699
cf7f9c0
 
 
 
 
 
d041699
 
 
03adfb4
 
cf7f9c0
d041699
 
 
cf7f9c0
660d02c
32520ec
5313d97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32520ec
5313d97
d041699
 
cf7f9c0
d041699
 
 
 
 
 
5313d97
d041699
5313d97
 
 
32520ec
 
d041699
cf7f9c0
d041699
 
 
9c38505
 
cf7f9c0
 
 
d041699
 
cf7f9c0
 
d041699
 
 
 
32520ec
81d4d32
d041699
81d4d32
d041699
 
 
 
 
 
81d4d32
d041699
 
 
 
81d4d32
d041699
 
cf7f9c0
 
 
 
 
 
d823b65
 
 
 
5329c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d823b65
 
 
 
 
14b6368
 
 
 
 
 
 
d823b65
 
 
 
675d3e2
d823b65
 
 
14b6368
 
d823b65
3470d29
 
 
 
 
 
 
 
 
 
 
d823b65
 
 
cf7f9c0
d823b65
 
 
 
 
f5052b1
 
d823b65
 
 
cf7f9c0
 
d823b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837628c
d823b65
 
 
 
 
a959b08
d823b65
 
 
 
 
a959b08
d823b65
 
 
 
837628c
d823b65
 
837628c
d823b65
a959b08
d823b65
 
 
 
 
a959b08
d823b65
 
 
 
cf7f9c0
d823b65
aa54deb
d823b65
 
 
 
32520ec
5313d97
d823b65
660d02c
d823b65
5313d97
 
32520ec
cf7f9c0
 
d823b65
 
cf7f9c0
d823b65
 
 
 
 
cf7f9c0
 
 
d823b65
cf7f9c0
d823b65
 
 
cf7f9c0
d823b65
 
 
 
 
 
 
6985ac5
d823b65
 
 
675d3e2
d823b65
675d3e2
 
cf7f9c0
675d3e2
 
 
 
 
 
 
 
d4b8273
264ed10
675d3e2
cf7f9c0
 
d823b65
 
cf7f9c0
d041699
cac3afa
d041699
cf7f9c0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

import os
import gradio as gr


import numpy as np
import torch
from PIL import Image
from loguru import logger
from tqdm import tqdm
from tools.common_utils import save_video
from dkt.pipelines.pipeline import DKTPipeline, ModelConfig


import cv2
import copy
import trimesh

from os.path import join
from tools.depth2pcd import depth2pcd
# from moge.model.v2 import MoGeModel


from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
import glob
import datetime
import shutil
import tempfile
import spaces
import time


#* better for bg:  logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
PROMPT = 'depth'
NEGATIVE_PROMPT = ''

height = 480
width = 832
window_size = 21
DKT_PIPELINE = DKTPipeline()

example_inputs = [
    
    ["examples/1.mp4", "1.3B", 5, 3],
    ["examples/33.mp4", "1.3B", 5, 3],
    
    
    
    ["examples/7.mp4", "1.3B", 5, 3],
    ["examples/8.mp4", "1.3B", 5, 3],
    ["examples/9.mp4", "1.3B", 5, 3],
    
    # ["examples/178db6e89ab682bfc612a3290fec58dd.mp4", "1.3B", 5, 3],
    ["examples/36.mp4", "1.3B", 5, 3],
    ["examples/39.mp4", "1.3B", 5, 3],
    
    # ["examples/b1f1fa44f414d7731cd7d77751093c44.mp4", "1.3B", 5, 3],
    
    ["examples/10.mp4", "1.3B", 5, 3],
    ["examples/30.mp4", "1.3B", 5, 3],
    ["examples/3.mp4", "1.3B", 5, 3],
    
    ["examples/32.mp4", "1.3B", 5, 3],
    
    ["examples/35.mp4", "1.3B", 5, 3],
    
    ["examples/40.mp4", "1.3B", 5, 3],
    ["examples/2.mp4", "1.3B", 5, 3],

    # ["examples/31.mp4", "1.3B", 5, 3],
    # ["examples/DJI_20250912164311_0007_D.mp4", "1.3B", 5, 3],
    # ["examples/DJI_20250912163642_0003_D.mp4", "1.3B", 5, 3],

    # ["examples/5.mp4", "1.3B", 5, 3],

    # ["examples/1b0daeb776471c7389b36cee53049417.mp4", "1.3B", 5, 3],
    # ["examples/8a6dfb8cfe80634f4f77ae9aa830d075.mp4", "1.3B", 5, 3],
    # ["examples/69230f105ad8740e08d743a8ee11c651.mp4", "1.3B", 5, 3],
    # ["examples/b68045aa2128ab63d9c7518f8d62eafe.mp4", "1.3B", 5, 3],
]





def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
    pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
    pts_rgb = frame[valid_mask] 

    # Initialize a 3D scene
    scene_3d = trimesh.Scene()

    # Add point cloud data to the scene
    point_cloud_data = trimesh.PointCloud(
        vertices=pts_3d, colors=pts_rgb
    )
    
    scene_3d.add_geometry(point_cloud_data)
    return scene_3d



def create_simple_glb_from_pointcloud(points, colors, glb_filename):
    try:
        if len(points) == 0:
            logger.warning(f"No valid points to create GLB for {glb_filename}")
            return False
        
        if colors is not None:
            # logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
            pts_rgb = colors
        else:
            logger.info("No colors provided, adding default white colors")
            pts_rgb = np.ones((len(points), 3))
        
        valid_mask = np.ones(len(points), dtype=bool)
        
        scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
        
        scene_3d.export(glb_filename)
        # logger.info(f"Saved GLB file using trimesh: {glb_filename}")
        
        return True
        
    except Exception as e:
        logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
        return False






def process_video(
    video_file,
    model_size,
    num_inference_steps,
    overlap
):
    global height
    global width
    global window_size
    global DKT_PIPELINE


    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
    


    
    start_time = time.time()

    prediction_result = DKT_PIPELINE(
        video_file,
        prompt=PROMPT,
        negative_prompt=NEGATIVE_PROMPT,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        overlap=overlap,
        return_rgb=True
    )

    end_time = time.time()
    spend_time = end_time - start_time
    logger.info(f"DKT_PIPELINE spend time: {spend_time:.2f} seconds for depth prediction")
    print(f"DKT_PIPELINE spend time: {spend_time:.2f} seconds for depth prediction")

    
    

    frame_length = len(prediction_result['rgb_frames'])
    vis_pc_num = 4
    indices = np.linspace(0, frame_length-1, vis_pc_num)
    indices = np.round(indices).astype(np.int32)
    
  
    pc_start_time = time.time()
    pcds = DKT_PIPELINE.prediction2pc_v2(prediction_result['depth_map'], prediction_result['rgb_frames'], indices, return_pcd=True)
    pc_end_time = time.time()
    pc_spend_time = pc_end_time - pc_start_time
    logger.info(f"prediction2pc_v2 spend time: {pc_spend_time:.2f} seconds for point cloud extraction")
    print(f"prediction2pc_v2 spend time: {pc_spend_time:.2f} seconds for point cloud extraction")

    glb_files = []

    for idx, pcd in enumerate(pcds):
        points = np.asarray(pcd.points)
        colors = np.asarray(pcd.colors) if pcd.has_colors() else None
        logger.info(f'points:{points.shape}, colors: {colors.shape}')
        print(f'points:{points.shape}, colors: {colors.shape}')


        
        points[:, 2] = -points[:, 2]  
        points[:, 0] = -points[:, 0]  
        

        glb_filename = os.path.join(cur_save_dir, f'{timestamp}_{idx:02d}.glb')
        success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
        if not success:
            logger.warning(f"Failed to save GLB file: {glb_filename}")
            print(f"Failed to save GLB file: {glb_filename}")

        glb_files.append(glb_filename)

    
    
    
    #* save depth predictions video
    output_filename = f"output_{timestamp}.mp4"
    output_path = os.path.join(cur_save_dir, output_filename)

    
    cap = cv2.VideoCapture(video_file)
    input_fps = cap.get(cv2.CAP_PROP_FPS)
    cap.release()

    save_video(prediction_result['colored_depth_map'], output_path, fps=input_fps, quality=8)
    return output_path, glb_files






#* gradio creation and initialization


css = """
 #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
            .md_feedback li {
                margin-bottom: 0px !important;
            }
"""



head_html = """
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
"""




with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
    # gr.Markdown(title, elem_classes=["title"])
    gr.Markdown(
        """
        # Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
        <p align="center">

        <a title="Website" href="https://daniellli.github.io/projects/DKT/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
            <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
        </a>
        <a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
            <img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
        </a>
        <a title="Social" href="https://x.com/xshocng1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
            <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
        </a>
    """
    )
    # gr.Markdown(description, elem_classes=["description"])
    # gr.Markdown("### Video Processing Demo", elem_classes=["description"])

    with gr.Row():
        with gr.Column():
            input_video = gr.Video(label="Input Video", elem_id='video-display-input')
            
            model_size = gr.Radio(
                # choices=["1.3B", "14B"],
                choices=["1.3B"],
                value="1.3B",
                label="Model Size"
            )


            with gr.Accordion("Advanced Parameters", open=False):
                num_inference_steps = gr.Slider(
                    minimum=1, maximum=50, value=5, step=1,
                    label="Number of Inference Steps"
                )
                overlap = gr.Slider(
                    minimum=1, maximum=20, value=3, step=1,
                    label="Overlap"
                )
                
            submit = gr.Button(value="Compute Depth", variant="primary")
        
        with gr.Column():
            output_video = gr.Video(
                label="Depth Outputs", 
                elem_id='video-display-output',
                autoplay=True
            )
            vis_video = gr.Video(
                label="Visualization Video", 
                visible=False,
                autoplay=True
            )

    with gr.Row():
        gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
    
    with gr.Row(equal_height=True):
        with gr.Column(scale=1):
            output_point_map0 = gr.Model3D(
                label="Point Cloud Key Frame 1",
                clear_color=[1.0, 1.0, 1.0, 1.0],
                interactive=False,
            )
        with gr.Column(scale=1):
            output_point_map1 = gr.Model3D(
                label="Point Cloud Key Frame 2",
                clear_color=[1.0, 1.0, 1.0, 1.0],
                interactive=False
            )
        
    
    with gr.Row(equal_height=True):
        
        with gr.Column(scale=1):
            output_point_map2 = gr.Model3D(
                label="Point Cloud Key Frame 3",
                clear_color=[1.0, 1.0, 1.0, 1.0],
                interactive=False
            )
        with gr.Column(scale=1):
            output_point_map3 = gr.Model3D(
                label="Point Cloud Key Frame 4",
                clear_color=[1.0, 1.0, 1.0, 1.0],
                interactive=False
            )

    def on_submit(video_file, model_size, num_inference_steps, overlap):
        logger.info('on_submit is calling')
        if video_file is None:
            return None, None, None, None, None, None, "Please upload a video file"
        
        try:
            
            start_time = time.time()
            output_path, glb_files = process_video(
                video_file, model_size, num_inference_steps, overlap
            )
            spend_time = time.time() - start_time
            logger.info(f"Total spend time in on_submit: {spend_time:.2f} seconds")
            print(f"Total spend time in on_submit: {spend_time:.2f} seconds")

            
            if output_path is None:
                return None, None, None, None, None, None, glb_files
            
            model3d_outputs = [None] * 4
            if glb_files:
                for i, glb_file in enumerate(glb_files[:4]):
                    if os.path.exists(glb_file):
                        model3d_outputs[i] = glb_file
            


            return output_path, None, *model3d_outputs
                
        except Exception as e:
            logger.error(e)
            return None, None, None, None, None, None

    
    submit.click(
        on_submit,
        inputs=[
            input_video, model_size, num_inference_steps, overlap
        ],
        outputs=[
            output_video, vis_video, output_point_map0, output_point_map1, output_point_map2, output_point_map3
        ]
    )
    

    
    logger.info(f'there are {len(example_inputs)} demo files')
    print(f'there are {len(example_inputs)} demo files')
        
    examples = gr.Examples(
        examples=example_inputs, 
        inputs=[input_video, model_size, num_inference_steps, overlap], 
        outputs=[
            output_video, vis_video, 
            output_point_map0, output_point_map1, output_point_map2, output_point_map3
        ], 
        fn=on_submit,
        examples_per_page=12,
        cache_examples=False
    )


if __name__ == '__main__':
    
    #* main code, model and moge model initialization
    demo.queue().launch(share = True)