vae_test / modeling_vae.py
stonesstones's picture
End of training
372980e verified
from typing import Optional, Union, Tuple
from dataclasses import dataclass
import torch
from torch import nn
from torch import Tensor
from transformers import PreTrainedModel
from transformers.utils import logging, ModelOutput
from torchvision.models import vgg16, VGG16_Weights
import torch.nn.functional as F
from einops import rearrange
from .configuration_vae import VAEConfig, EncoderType, DecoderType
logger = logging.get_logger(__name__)
@dataclass
class VAEOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
reconstruction: torch.FloatTensor = None
mse_loss: Optional[torch.FloatTensor] = None
l1_loss: Optional[torch.FloatTensor] = None
perceptual_loss: Optional[torch.FloatTensor] = None
dino_loss: Optional[torch.FloatTensor] = None
kl_loss: Optional[torch.FloatTensor] = None
class Vgg16(nn.Module):
# ref https://github.com/dxyang/StyleTransfer/blob/master/vgg.py
def __init__(self, layers):
super().__init__()
features = vgg16(weights=VGG16_Weights.DEFAULT).features
self.to_relu_1_2 = nn.Sequential()
self.to_relu_2_2 = nn.Sequential()
self.to_relu_3_3 = nn.Sequential()
self.to_relu_4_3 = nn.Sequential()
for x in range(4):
self.to_relu_1_2.add_module(str(x), features[x])
for x in range(4, 9):
self.to_relu_2_2.add_module(str(x), features[x])
for x in range(9, 16):
self.to_relu_3_3.add_module(str(x), features[x])
for x in range(16, 23):
self.to_relu_4_3.add_module(str(x), features[x])
# don't need the gradients, just want the features
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
h = self.to_relu_1_2(x)
h_relu_1_2 = h
h = self.to_relu_2_2(h)
h_relu_2_2 = h
h = self.to_relu_3_3(h)
h_relu_3_3 = h
h = self.to_relu_4_3(h)
h_relu_4_3 = h
out = (h_relu_1_2, h_relu_2_2, h_relu_3_3, h_relu_4_3)
return out
class PerceptualLoss(nn.Module):
def __init__(self, layers=(3, 8, 15, 22), unnorm_mean=None, unnorm_std=None, weights=None):
super().__init__()
self.vgg = Vgg16(layers=layers)
self.layers = layers
self.weights = weights or [1.0 / len(layers)] * len(layers)
def forward(self, x, y):
x_vgg = self.vgg(x)
y_vgg = self.vgg(y)
loss = 0.0
for x_vgg_layer, y_vgg_layer in zip(x_vgg, y_vgg):
loss += F.mse_loss(x_vgg_layer, y_vgg_layer)
return loss
class DinoLoss(nn.Module):
def __init__(self, patch_size, use_large=False):
super().__init__()
size = 'b' if use_large else 's'
dino = f'dino_vit{size}{patch_size}'
self.vit = torch.hub.load('facebookresearch/dino:main', dino)
print('use ', dino)
self.vit.eval()
for param in self.vit.parameters():
param.requires_grad = False
def forward(self, gt, embed):
with torch.no_grad():
dino_features = self.vit.prepare_tokens(gt)
for blk in self.vit.blocks:
dino_features = blk(dino_features)
dino_features = self.vit.norm(dino_features)
dino_features = dino_features[:, 1:]
embed_features = rearrange(embed, 'b c h w -> b (h w) c').contiguous()
dtype = embed.dtype
dino_loss = 1 - F.cosine_similarity(dino_features.to(torch.float32), embed_features.to(torch.float32), dim=2)
dino_loss = dino_loss.mean()
dino_loss = dino_loss.to(dtype)
return dino_loss
class VAEModel(PreTrainedModel):
config_class = VAEConfig
main_input_name = "s0_img"
def __init__(self, config: VAEConfig):
super().__init__(config)
dict_config = config.to_dict()
self.encoder = EncoderType[config.encoder_type].value(**dict_config)
enc_out_dim = self.config.z_channels * (self.config.resolution[0] // (2 ** (len(self.config.channels_mult) - 1))) ** 2
latent_dim = 64
self.cond_mlp = nn.Sequential(
nn.Linear(enc_out_dim * 2, config.z_channels),
nn.ReLU(),
nn.Linear(config.z_channels, config.z_channels),
nn.ReLU(),
nn.Linear(config.z_channels, latent_dim * 2),
)
self.in_mlp = nn.Sequential(
nn.Linear(enc_out_dim, config.z_channels),
nn.ReLU(),
nn.Linear(config.z_channels, config.z_channels),
nn.ReLU(),
nn.Linear(config.z_channels, latent_dim * 2),
)
self.cond_mlp_out = nn.Sequential(
nn.Linear(latent_dim + enc_out_dim, config.z_channels),
nn.ReLU(),
nn.Linear(config.z_channels, config.z_channels),
nn.ReLU(),
nn.Linear(config.z_channels, enc_out_dim),
)
self.out_mlp = nn.Sequential(
nn.Linear(latent_dim, config.z_channels),
nn.ReLU(),
nn.Linear(config.z_channels, config.z_channels),
nn.ReLU(),
nn.Linear(config.z_channels, enc_out_dim),
)
self.decoder = DecoderType[config.decoder_type].value(**dict_config)
if config.w_perceptual > 0:
self.perceptual_loss = PerceptualLoss(
unnorm_mean=config.image_mean,
unnorm_std=config.image_std
)
if config.w_dino > 0:
assert config.z_channels in [384, 768]
patch_size = 2 ** (len(config.channels_mult) - 1)
self.dino_loss = DinoLoss(patch_size=patch_size)
self.log_state = {
"loss": None,
"mse_loss": None,
"l1_loss": None,
"perceptual_loss": None,
"dino_loss": None,
"gt": None,
"recon": None,
}
self.post_init()
def encode(self, s0_img: Tensor, s1_img: Tensor, a0: Tensor) -> tuple[Tensor, Tensor, Tensor, Tensor]:
# s0 = self.encoder(s0_img).reshape(s0_img.shape[0], -1)
s0 = None
s1 = self.encoder(s1_img).reshape(s1_img.shape[0], -1)
# s1_mean_var = self.cond_mlp(torch.cat([s0, s1], dim=1))
s1_mean_var = self.in_mlp(s1)
s1_mean, s1_logvar = s1_mean_var.chunk(2, dim=1)
s1_stddev = torch.exp(s1_logvar * 0.5)
s1_latent = s1_mean + s1_stddev * torch.randn_like(s1_mean)
return s1_latent, s0, s1_mean, s1_logvar
def decode(self, s1_latent: Tensor, s0: Tensor) -> Tensor:
quant_h = int(self.config.resolution[0] / (2 ** (len(self.config.channels_mult) - 1)))
quant_w = int(self.config.resolution[1] / (2 ** (len(self.config.channels_mult) - 1)))
# s1_latent = self.cond_mlp_out(torch.cat([s1_latent, s0], dim=1)).reshape(s1_latent.shape[0], self.config.z_channels, quant_h, quant_w)
s1_latent = self.out_mlp(s1_latent).reshape(s1_latent.shape[0], self.config.z_channels, quant_h, quant_w)
return self.decoder(s1_latent)
def forward(self,
s0_img: Tensor,
s1_img: Tensor,
action: Tensor,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> Union[Tuple, VAEOutput]:
return_dict = return_dict if return_dict is not None else False
s1_latent, s0, s1_mean, s1_logvar = self.encode(s0_img, s1_img, action)
recon = self.decode(s1_latent, s0)
loss = None
if return_loss:
# recon loss
mse_loss = F.mse_loss(recon, s1_img)
l1_loss = F.l1_loss(recon, s1_img)
if self.config.w_perceptual > 0:
perceptual_loss = self.perceptual_loss(recon, s1_img)
else:
perceptual_loss = torch.zeros_like(mse_loss).to(mse_loss.device)
if self.config.w_dino > 0:
dino_loss = self.dino_loss(s1_img, None)
else:
dino_loss = torch.zeros_like(mse_loss).to(mse_loss.device)
# kl loss
kl_loss = torch.mean(-0.5 * torch.sum(1 + s1_logvar - s1_mean**2 - s1_logvar.exp(), dim=1))
loss = self.config.w_mse * mse_loss + \
self.config.w_l1 * l1_loss + \
self.config.w_perceptual * perceptual_loss + \
self.config.w_dino * dino_loss + \
self.config.w_kl * kl_loss
if not return_dict:
self.log_state["loss"] = loss.item()
self.log_state["mse_loss"] = mse_loss.item()
self.log_state["l1_loss"] = l1_loss.item()
self.log_state["perceptual_loss"] = perceptual_loss.item()
self.log_state["dino_loss"] = dino_loss.item()
self.log_state["kl_loss"] = kl_loss.item()
self.log_state["gt"] = s0_img.clone().detach().cpu()[:4].to(torch.float32)
self.log_state["recon"] = recon.clone().detach().cpu()[:4].to(torch.float32)
return ((loss,) + (recon,)) if loss is not None else recon
return VAEOutput(
loss=loss,
reconstruction=recon,
mse_loss=mse_loss,
l1_loss=l1_loss,
perceptual_loss=perceptual_loss,
dino_loss=dino_loss,
)
def get_last_layer(self):
raise NotImplementedError