punctuation-tedtalk2012-bert-base-full-text-bert
This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the tiagoblima/punctuation-tedtalk2012-full-text-bert dataset. It achieves the following results on the evaluation set:
- Loss: 0.1495
- Precision: 0.7179
- Recall: 0.7416
- F1: 0.7295
- Accuracy: 0.9417
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 197 | 0.1495 | 0.7179 | 0.7416 | 0.7295 | 0.9417 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 6
Dataset used to train tiagoblima/punctuation-tedtalk2012-bert-base-full-text-bert
Evaluation results
- Precision on tiagoblima/punctuation-tedtalk2012-full-text-bertself-reported0.718
- Recall on tiagoblima/punctuation-tedtalk2012-full-text-bertself-reported0.742
- F1 on tiagoblima/punctuation-tedtalk2012-full-text-bertself-reported0.730
- Accuracy on tiagoblima/punctuation-tedtalk2012-full-text-bertself-reported0.942