Tiago Barbosa de Lima
update model card README.md
76715df
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - tiagoblima/punctuation-tedtalk2012-full-text-bert
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: punctuation-tedtalk2012-bert-base-full-text-bert
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: tiagoblima/punctuation-tedtalk2012-full-text-bert
          type: tiagoblima/punctuation-tedtalk2012-full-text-bert
        metrics:
          - name: Precision
            type: precision
            value: 0.7178729689807977
          - name: Recall
            type: recall
            value: 0.7416073245167853
          - name: F1
            type: f1
            value: 0.7295471603702777
          - name: Accuracy
            type: accuracy
            value: 0.9416717510677243

punctuation-tedtalk2012-bert-base-full-text-bert

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the tiagoblima/punctuation-tedtalk2012-full-text-bert dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1495
  • Precision: 0.7179
  • Recall: 0.7416
  • F1: 0.7295
  • Accuracy: 0.9417

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 197 0.1495 0.7179 0.7416 0.7295 0.9417

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2