metadata
dataset_info:
features:
- name: ID
dtype: string
- name: Height
dtype: int64
- name: Width
dtype: int64
- name: Entity_Masks
dtype: string
- name: Grouped_OCR_Blocks
dtype: string
- name: Caption
dtype: string
- name: Tags
dtype: string
- name: OCR_Text
dtype: string
- name: URL
dtype: string
- name: URL_sha256
dtype: string
- name: Language
dtype: string
- name: NSFW
dtype: string
splits:
- name: train
num_bytes: 1904454568
num_examples: 120000
download_size: 1144599398
dataset_size: 1904454568
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
ADOPD: A Large-Scale Document Page Decomposition Dataset
ADOPD is a large-scale dataset designed for document image understanding. It introduces a novel data-driven document taxonomy discovery framework that combines large-scale pretrained models with a human-in-the-loop refinement process. The dataset supports four core tasks and includes rich annotations to foster progress in document analysis.
π Dataset Summary
- Total Images: 120,000
- Languages:
- English: 60,000
- Chinese: 20,000
- Japanese: 20,000
- Others: 20,000
ADOPD ensures diversity and balance across document types and languages, validated through extensive experiments.
π§© Supported Tasks
| Task | Description | Field Name |
|---|---|---|
| Doc2Mask | Segment entity regions as pixel-level masks | Entity_Masks |
| Doc2Box | Detect and group OCR text blocks | Grouped_OCR_Blocks |
| Doc2Tag | Predict high-level semantic tags | Tags |
| Doc2Seq | Generate abstracted captions | Caption |
π Annotation Fields
Each data sample includes the following fields:
ID/URL_sha256: Unique identifier for each document imageURL: Direct link to download the imageHeight,Width: Image resolution in pixelsEntity_Masks: Human-annotated segmentation masks for document entitiesGrouped_OCR_Blocks: Grouped OCR text blocks with bounding boxesCaption: Human-written descriptive caption summarizing the contentTags: Predicted document-level semantic tagsOCR_Text: Raw plain-text extracted from the imageLanguage: Language of the document contentNSFW: Indicator flag for not-safe-for-work (NSFW) content
π Citation
If you use ADOPD in your research, please cite:
@inproceedings{
gu2024adopd,
title={{ADOPD}: A Large-Scale Document Page Decomposition Dataset},
author={Jiuxiang Gu and Xiangxi Shi and Jason Kuen and Lu Qi and Ruiyi Zhang and Anqi Liu and Ani Nenkova and Tong Sun},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=x1ptaXpOYa}
}
π License
- License: CC BY-NC-ND 4.0
- For non-commercial use only. Redistribution and derivative works are not permitted.
