|
|
--- |
|
|
dataset_info: |
|
|
features: |
|
|
- name: ID |
|
|
dtype: string |
|
|
- name: Height |
|
|
dtype: int64 |
|
|
- name: Width |
|
|
dtype: int64 |
|
|
- name: Entity_Masks |
|
|
dtype: string |
|
|
- name: Grouped_OCR_Blocks |
|
|
dtype: string |
|
|
- name: Caption |
|
|
dtype: string |
|
|
- name: Tags |
|
|
dtype: string |
|
|
- name: OCR_Text |
|
|
dtype: string |
|
|
- name: URL |
|
|
dtype: string |
|
|
- name: URL_sha256 |
|
|
dtype: string |
|
|
- name: Language |
|
|
dtype: string |
|
|
- name: NSFW |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1904454568 |
|
|
num_examples: 120000 |
|
|
download_size: 1144599398 |
|
|
dataset_size: 1904454568 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: data/train-* |
|
|
--- |
|
|
|
|
|
# ADOPD: A Large-Scale Document Page Decomposition Dataset |
|
|
|
|
|
[](.top_ADOPD_Tasks.png) |
|
|
|
|
|
**ADOPD** is a large-scale dataset designed for document image understanding. It introduces a novel data-driven document taxonomy discovery framework that combines large-scale pretrained models with a human-in-the-loop refinement process. The dataset supports four core tasks and includes rich annotations to foster progress in document analysis. |
|
|
|
|
|
--- |
|
|
|
|
|
## π Dataset Summary |
|
|
|
|
|
- **Total Images**: 120,000 |
|
|
- **Languages**: |
|
|
- English: 60,000 |
|
|
- Chinese: 20,000 |
|
|
- Japanese: 20,000 |
|
|
- Others: 20,000 |
|
|
|
|
|
ADOPD ensures **diversity and balance** across document types and languages, validated through extensive experiments. |
|
|
|
|
|
--- |
|
|
|
|
|
## π§© Supported Tasks |
|
|
|
|
|
| Task | Description | Field Name | |
|
|
|------------|--------------------------------------------|----------------------| |
|
|
| **Doc2Mask** | Segment entity regions as pixel-level masks | `Entity_Masks` | |
|
|
| **Doc2Box** | Detect and group OCR text blocks | `Grouped_OCR_Blocks` | |
|
|
| **Doc2Tag** | Predict high-level semantic tags | `Tags` | |
|
|
| **Doc2Seq** | Generate abstracted captions | `Caption` | |
|
|
|
|
|
--- |
|
|
|
|
|
## π Annotation Fields |
|
|
|
|
|
Each data sample includes the following fields: |
|
|
|
|
|
- `ID` / `URL_sha256`: Unique identifier for each document image |
|
|
- `URL`: Direct link to download the image |
|
|
- `Height`, `Width`: Image resolution in pixels |
|
|
- `Entity_Masks`: Human-annotated segmentation masks for document entities |
|
|
- `Grouped_OCR_Blocks`: Grouped OCR text blocks with bounding boxes |
|
|
- `Caption`: Human-written descriptive caption summarizing the content |
|
|
- `Tags`: Predicted document-level semantic tags |
|
|
- `OCR_Text`: Raw plain-text extracted from the image |
|
|
- `Language`: Language of the document content |
|
|
- `NSFW`: Indicator flag for not-safe-for-work (NSFW) content |
|
|
|
|
|
--- |
|
|
|
|
|
## π Citation |
|
|
|
|
|
If you use ADOPD in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@inproceedings{ |
|
|
gu2024adopd, |
|
|
title={{ADOPD}: A Large-Scale Document Page Decomposition Dataset}, |
|
|
author={Jiuxiang Gu and Xiangxi Shi and Jason Kuen and Lu Qi and Ruiyi Zhang and Anqi Liu and Ani Nenkova and Tong Sun}, |
|
|
booktitle={The Twelfth International Conference on Learning Representations}, |
|
|
year={2024}, |
|
|
url={https://openreview.net/forum?id=x1ptaXpOYa} |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π License |
|
|
|
|
|
- **License**: [CC BY-NC-ND 4.0](https://creativecommons.org/licenses/by-nc-nd/4.0/) |
|
|
- For **non-commercial use only**. Redistribution and derivative works are **not permitted**. |
|
|
|