FER2025 / README.md
imadhavan's picture
Update README.md
e240b90 verified
---
name: "FER2025"
tags: ["facial-emotion", "FER", "emotion-recognition", "deep-learning"]
license: "cc-by-nc-4.0"
---
# FER2025 – Facial Expression Recognition Dataset
[![License: Research Use Only](https://img.shields.io/badge/License-Research%20Use%20Only-lightgrey.svg)](#license--attribution)
[![Total Images](https://img.shields.io/badge/Total%20Images-1.59M-blue)](#overview)
[![Classes](https://img.shields.io/badge/Classes-7-green)](#overview)
---
## Overview
**FER2025** is a **large-scale, balanced facial emotion dataset** designed for **deep learning and computer vision research**. It contains **1,589,810 images** across **7 emotion classes**:
| Class | Images |
|------------|---------|
| Angry | 224,624 |
| Disgust | 239,366 |
| Fear | 223,466 |
| Happy | 222,082 |
| Neutral | 234,230 |
| Sad | 217,884 |
| Surprise | 228,158 |
**Image formats:** jpg, jpeg, png
**Balanced:** Maximum class difference ≈ 1.3%
FER2025 is suitable for **feature extraction, model training, and benchmarking**and**Training deep learning model**.
---
## Dataset Structure
FER2025/ ➡️ Angry.tar | Disgust.tar | Fear.tar | Happy.tar | Neutral.tar | Sad.tar | Surprise.tar
Each TAR contains **images + corresponding `.cls` label files** for efficient streaming.
---
## Recommended Usage
- **Feature Extraction:** ResNet, EfficientNet, ViT embeddings
- **Training & Evaluation:** Balanced classes remove need for oversampling or class weighting
- **Large-Scale Training:** Use TAR/WebDataset format for GPU-efficient streaming
---
## Example: Loading FER2025 with PyTorch + WebDataset
```python
import webdataset as wds
from torchvision import transforms
import torch
transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
])
dataset = (
wds.WebDataset("FER2025/{Angry,Disgust,Fear,Happy,Neutral,Sad,Surprise}.tar")
.decode("pil")
.to_tuple("jpg", "cls")
.map_tuple(transform, int)
)
loader = torch.utils.data.DataLoader(dataset, batch_size=64, num_workers=4, shuffle=True)
for images, labels in loader:
print(images.shape, labels.shape)
break
```
---
## License & Ethical Use
**License:** CC BY-NC 4.0 – Attribution required, non-commercial use
**Ethical Use:** Images are sourced from publicly available data for research. Users must respect privacy and avoid commercial misuse.
---
## Citations
@dataset
{FER2025,
author = {Adhavan M},
title = {FER2025: Large-Scale Balanced Facial Expression Dataset},
year = {2025},
url = https://huggingface.co/datasets/imadhavan/FER2025
}