scrabble-embed-v2 / README.md
mehularora's picture
Add new SentenceTransformer model
a4bf89b verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:222635
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: OMBRELLAS
sentences:
- '''ALPHASORT, to sort into alphabetic order [v]'''
- '''OMBRELLA, an umbrella [n]'''
- '''PHYLLID, the leaf of a liverwort or moss [n]'''
- source_sentence: ROUNCE
sentences:
- '''LYMPHADENITIS, inflammation of the lymph nodes [n]'''
- '''one who advocates curialism, the system of government of curia [n -S]'''
- '''part of a hand printing press [n -S]'''
- source_sentence: SEROON
sentences:
- '''(Spanish) a crate or hamper; a bale wrapped in hide, also CEROON, SERON [n
-S]'''
- '''a white crystalline soluble phenol used as a photographic developer [n -S]'''
- '''serving to disseminate [adj]'''
- source_sentence: BLAFF
sentences:
- '''to bark [v -ED, -ING, -S]'''
- '''RAZORCLAM, a lamellibranch mollusc with a shell like an old-fashioned razor
handle, also RAZORFISH [n]'''
- '''HYPERCORRECT, refers to a linguistic construction or pronunciation produced
by mistaken analogy with standard usage out of a desire to be correct, such as
"open widely" or "on behalf of my wife and I" [adv]'''
- source_sentence: TRAUMATOLOGY
sentences:
- '''FELLATRIX, a female who fellates [n]'''
- '''pertaining to a grandparent [adj]'''
- '''the study of wounds and their effects [n TRAUMATOLOGIES]'''
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dictionary test
type: dictionary-test
metrics:
- type: cosine_accuracy@1
value: 0.6825254231197672
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8121384167594955
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.831147364260304
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.850587516619354
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6825254231197672
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27071280558649846
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1662294728520608
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08505875166193541
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6825254231197672
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8121384167594955
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.831147364260304
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.850587516619354
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7750717041193917
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7499954655044675
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7522443165977887
name: Cosine Map@100
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mehularora/scrabble-embed-v2")
# Run inference
sentences = [
'TRAUMATOLOGY',
"'the study of wounds and their effects [n TRAUMATOLOGIES]'",
"'FELLATRIX, a female who fellates [n]'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7472, 0.0801],
# [0.7472, 1.0000, 0.2525],
# [0.0801, 0.2525, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dictionary-test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6825 |
| cosine_accuracy@3 | 0.8121 |
| cosine_accuracy@5 | 0.8311 |
| cosine_accuracy@10 | 0.8506 |
| cosine_precision@1 | 0.6825 |
| cosine_precision@3 | 0.2707 |
| cosine_precision@5 | 0.1662 |
| cosine_precision@10 | 0.0851 |
| cosine_recall@1 | 0.6825 |
| cosine_recall@3 | 0.8121 |
| cosine_recall@5 | 0.8311 |
| cosine_recall@10 | 0.8506 |
| **cosine_ndcg@10** | **0.7751** |
| cosine_mrr@10 | 0.75 |
| cosine_map@100 | 0.7522 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 222,635 training samples
* Columns: <code>word</code> and <code>definition</code>
* Approximate statistics based on the first 1000 samples:
| | word | definition |
|:--------|:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 4.87 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.32 tokens</li><li>max: 98 tokens</li></ul> |
* Samples:
| word | definition |
|:-------------------------|:------------------------------------------------------------------------------------|
| <code>LICHGATES</code> | <code>'LICHGATE, the roofed gate of a churchyard, also LYCHGATE [n]'</code> |
| <code>MOULDING</code> | <code>'a long, narrow strip used to decorate a surface, also MOLDING [n -S]'</code> |
| <code>PARABAPTISM</code> | <code>'uncanonical baptism [n -S]'</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256
],
"matryoshka_weights": [
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `project`: huggingface
- `trackio_space_id`: trackio
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: no
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | dictionary-test_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:------------------------------:|
| 0.0287 | 100 | 1.0186 | 0.7180 |
| 0.0575 | 200 | 0.7633 | 0.7274 |
| 0.0862 | 300 | 0.75 | 0.7398 |
| 0.1150 | 400 | 0.7503 | 0.7456 |
| 0.1437 | 500 | 0.7271 | 0.7496 |
| 0.1725 | 600 | 0.6531 | 0.7508 |
| 0.2012 | 700 | 0.6586 | 0.7560 |
| 0.2300 | 800 | 0.6559 | 0.7591 |
| 0.2587 | 900 | 0.6116 | 0.7572 |
| 0.2874 | 1000 | 0.615 | 0.7625 |
| 0.3162 | 1100 | 0.5926 | 0.7596 |
| 0.3449 | 1200 | 0.6414 | 0.7623 |
| 0.3737 | 1300 | 0.6143 | 0.7641 |
| 0.4024 | 1400 | 0.6464 | 0.7655 |
| 0.4312 | 1500 | 0.6039 | 0.7676 |
| 0.4599 | 1600 | 0.514 | 0.7643 |
| 0.4886 | 1700 | 0.5719 | 0.7675 |
| 0.5174 | 1800 | 0.612 | 0.7675 |
| 0.5461 | 1900 | 0.5639 | 0.7698 |
| 0.5749 | 2000 | 0.6025 | 0.7672 |
| 0.6036 | 2100 | 0.5623 | 0.7719 |
| 0.6324 | 2200 | 0.5484 | 0.7698 |
| 0.6611 | 2300 | 0.5799 | 0.7730 |
| 0.6899 | 2400 | 0.5253 | 0.7716 |
| 0.7186 | 2500 | 0.5134 | 0.7732 |
| 0.7473 | 2600 | 0.5543 | 0.7721 |
| 0.7761 | 2700 | 0.5342 | 0.7736 |
| 0.8048 | 2800 | 0.5507 | 0.7746 |
| 0.8336 | 2900 | 0.5176 | 0.7737 |
| 0.8623 | 3000 | 0.5067 | 0.7751 |
| 0.8911 | 3100 | 0.548 | 0.7749 |
| 0.9198 | 3200 | 0.5443 | 0.7751 |
| 0.9485 | 3300 | 0.5603 | 0.7751 |
| 0.9773 | 3400 | 0.5774 | 0.7751 |
### Framework Versions
- Python: 3.11.4
- Sentence Transformers: 5.1.2
- Transformers: 4.57.3
- PyTorch: 2.9.1+cpu
- Accelerate: 1.12.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->