metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6476190476190476
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6476190476190476
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5133333333333332
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3165714285714285
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.18857142857142858
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.13396825396825396
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.10433333333333335
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06742481608756247
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5411228142559339
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7397482609380314
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8429667985290079
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8856357375498775
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9091330295382077
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6476190476190476
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6917131025478591
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.71478335831634
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7666819432677721
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7855970749692088
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7960468614602451
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6476190476190476
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8090476190476191
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8090476190476191
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8090476190476191
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8090476190476191
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8090476190476191
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6476190476190476
name: Cosine Map@1
- type: cosine_map@20
value: 0.5561135670751935
name: Cosine Map@20
- type: cosine_map@50
value: 0.5477711353289022
name: Cosine Map@50
- type: cosine_map@100
value: 0.5791852239372863
name: Cosine Map@100
- type: cosine_map@150
value: 0.5872469517518495
name: Cosine Map@150
- type: cosine_map@200
value: 0.5908784036739082
name: Cosine Map@200
- type: cosine_map@500
value: 0.5948564356607342
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.12972972972972974
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.12972972972972974
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5705405405405405
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.38962162162162167
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.25140540540540546
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.19012612612612612
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.15154054054054056
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0037413987812150314
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.38432915927625627
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5663097940153319
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.6710180189388714
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7443549924512646
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7804985217049148
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.12972972972972974
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6133809590566169
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5888378318443163
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.613553130716134
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6492700673561147
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6672020616803231
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.12972972972972974
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5608108108108109
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5608108108108109
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5608108108108109
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5608108108108109
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5608108108108109
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.12972972972972974
name: Cosine Map@1
- type: cosine_map@20
value: 0.47928087268629077
name: Cosine Map@20
- type: cosine_map@50
value: 0.4265150109477007
name: Cosine Map@50
- type: cosine_map@100
value: 0.4308614258675324
name: Cosine Map@100
- type: cosine_map@150
value: 0.446315567522346
name: Cosine Map@150
- type: cosine_map@200
value: 0.45361884446786194
name: Cosine Map@200
- type: cosine_map@500
value: 0.46587892353181215
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9704433497536946
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9852216748768473
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9852216748768473
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9901477832512315
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9901477832512315
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5120689655172413
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3664039408866995
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.2411330049261084
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.180623973727422
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1453448275862069
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3229666331805043
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5039915991834915
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.6239950018657238
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.6837127628220585
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.724182886190782
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5416271120841382
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5273905187096658
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5573943264798527
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5882759422186796
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6082376029646045
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.510702296647636
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5111935025343795
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5111935025343795
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5112378818891037
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5112378818891037
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.4032624181455029
name: Cosine Map@20
- type: cosine_map@50
value: 0.35929856113701575
name: Cosine Map@50
- type: cosine_map@100
value: 0.3633301227599498
name: Cosine Map@100
- type: cosine_map@150
value: 0.3779770424201306
name: Cosine Map@150
- type: cosine_map@200
value: 0.38546911827821406
name: Cosine Map@200
- type: cosine_map@500
value: 0.3983960288142158
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.6504854368932039
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9805825242718447
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9902912621359223
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9902912621359223
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9902912621359223
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9902912621359223
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6504854368932039
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.47815533980582525
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.28699029126213593
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.17563106796116504
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.12543689320388354
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.09786407766990295
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06122803520614593
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.512665335199255
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.6880766978766553
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8002784995071653
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8453144636093844
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8773140543871931
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6504854368932039
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6531212612064398
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6669362863744952
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7218911998936125
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7415597018345085
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7535751066625261
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6504854368932039
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7993527508090615
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7997572815533981
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7997572815533981
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7997572815533981
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7997572815533981
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6504854368932039
name: Cosine Map@1
- type: cosine_map@20
value: 0.5072300500933464
name: Cosine Map@20
- type: cosine_map@50
value: 0.4897274345176646
name: Cosine Map@50
- type: cosine_map@100
value: 0.5196798622563865
name: Cosine Map@100
- type: cosine_map@150
value: 0.5276837053538445
name: Cosine Map@150
- type: cosine_map@200
value: 0.5311205359244624
name: Cosine Map@200
- type: cosine_map@500
value: 0.5365056842045905
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.7243889755590224
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9609984399375975
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9797191887675507
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9937597503900156
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9958398335933437
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9973998959958398
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.7243889755590224
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12428497139885596
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05134685387415497
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.026214248569942804
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.017597503900156002
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013281331253250133
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2802961642275215
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.9183394002426764
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9482665973305597
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9692234356040907
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9756023574276305
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9821892875715027
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.7243889755590224
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.8023352815755668
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.8104895152869938
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.8150081000806421
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8162651648802736
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.8174362445077372
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.7243889755590224
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7938466413093047
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7944053350960067
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.794613049565821
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7946306448507517
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7946402095756717
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.7243889755590224
name: Cosine Map@1
- type: cosine_map@20
value: 0.7324440771234734
name: Cosine Map@20
- type: cosine_map@50
value: 0.734716178743038
name: Cosine Map@50
- type: cosine_map@100
value: 0.7353155432601859
name: Cosine Map@100
- type: cosine_map@150
value: 0.735429453970343
name: Cosine Map@150
- type: cosine_map@200
value: 0.7355154445871764
name: Cosine Map@200
- type: cosine_map@500
value: 0.7356208832908805
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.6697867914716589
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9505980239209568
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9771190847633905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9859594383775351
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9921996879875195
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9942797711908476
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6697867914716589
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12470098803952159
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05225169006760271
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.026708268330733236
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.01798231929277171
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.01353874154966199
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2517940717628705
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.9059022360894435
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9474345640492287
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.967932050615358
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9771190847633905
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9807592303692148
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6697867914716589
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.770344092734726
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7819450345813985
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7865455025019679
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7883807621544129
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7890604802329748
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6697867914716589
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7504302722692131
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7513280223222801
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7514573016845009
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7515108675350354
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7515238522218625
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6697867914716589
name: Cosine Map@1
- type: cosine_map@20
value: 0.6929705838065172
name: Cosine Map@20
- type: cosine_map@50
value: 0.696080766802269
name: Cosine Map@50
- type: cosine_map@100
value: 0.6967651580129317
name: Cosine Map@100
- type: cosine_map@150
value: 0.6969258122016383
name: Cosine Map@150
- type: cosine_map@200
value: 0.6969715581100935
name: Cosine Map@200
- type: cosine_map@500
value: 0.6970655432634698
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.19760790431617264
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.19760790431617264
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.15439417576703063
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.0617576703068123
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.03087883515340615
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.020585890102270757
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.015439417576703075
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06371492954956293
name: Cosine Recall@1
- type: cosine_recall@20
value: 1
name: Cosine Recall@20
- type: cosine_recall@50
value: 1
name: Cosine Recall@50
- type: cosine_recall@100
value: 1
name: Cosine Recall@100
- type: cosine_recall@150
value: 1
name: Cosine Recall@150
- type: cosine_recall@200
value: 1
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.19760790431617264
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5478938300274205
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5478938300274205
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5478938300274205
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5478938300274205
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5478938300274205
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.19760790431617264
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4124442798779788
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.4124442798779788
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4124442798779788
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4124442798779788
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4124442798779788
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.19760790431617264
name: Cosine Map@1
- type: cosine_map@20
value: 0.32993583709540925
name: Cosine Map@20
- type: cosine_map@50
value: 0.32993583709540925
name: Cosine Map@50
- type: cosine_map@100
value: 0.32993583709540925
name: Cosine Map@100
- type: cosine_map@150
value: 0.32993583709540925
name: Cosine Map@150
- type: cosine_map@200
value: 0.32993583709540925
name: Cosine Map@200
- type: cosine_map@500
value: 0.32993583709540925
name: Cosine Map@500
SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
full_en,full_es,full_de,full_zh,mix_es,mix_deandmix_zh - Evaluated with
InformationRetrievalEvaluator
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|---|---|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.961 | 0.9506 | 1.0 |
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9797 | 0.9771 | 1.0 |
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9938 | 0.986 | 1.0 |
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9922 | 1.0 |
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9943 | 1.0 |
| cosine_precision@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
| cosine_precision@20 | 0.5133 | 0.5705 | 0.5121 | 0.4782 | 0.1243 | 0.1247 | 0.1544 |
| cosine_precision@50 | 0.3166 | 0.3896 | 0.3664 | 0.287 | 0.0513 | 0.0523 | 0.0618 |
| cosine_precision@100 | 0.1886 | 0.2514 | 0.2411 | 0.1756 | 0.0262 | 0.0267 | 0.0309 |
| cosine_precision@150 | 0.134 | 0.1901 | 0.1806 | 0.1254 | 0.0176 | 0.018 | 0.0206 |
| cosine_precision@200 | 0.1043 | 0.1515 | 0.1453 | 0.0979 | 0.0133 | 0.0135 | 0.0154 |
| cosine_recall@1 | 0.0674 | 0.0037 | 0.0111 | 0.0612 | 0.2803 | 0.2518 | 0.0637 |
| cosine_recall@20 | 0.5411 | 0.3843 | 0.323 | 0.5127 | 0.9183 | 0.9059 | 1.0 |
| cosine_recall@50 | 0.7397 | 0.5663 | 0.504 | 0.6881 | 0.9483 | 0.9474 | 1.0 |
| cosine_recall@100 | 0.843 | 0.671 | 0.624 | 0.8003 | 0.9692 | 0.9679 | 1.0 |
| cosine_recall@150 | 0.8856 | 0.7444 | 0.6837 | 0.8453 | 0.9756 | 0.9771 | 1.0 |
| cosine_recall@200 | 0.9091 | 0.7805 | 0.7242 | 0.8773 | 0.9822 | 0.9808 | 1.0 |
| cosine_ndcg@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
| cosine_ndcg@20 | 0.6917 | 0.6134 | 0.5416 | 0.6531 | 0.8023 | 0.7703 | 0.5479 |
| cosine_ndcg@50 | 0.7148 | 0.5888 | 0.5274 | 0.6669 | 0.8105 | 0.7819 | 0.5479 |
| cosine_ndcg@100 | 0.7667 | 0.6136 | 0.5574 | 0.7219 | 0.815 | 0.7865 | 0.5479 |
| cosine_ndcg@150 | 0.7856 | 0.6493 | 0.5883 | 0.7416 | 0.8163 | 0.7884 | 0.5479 |
| cosine_ndcg@200 | 0.796 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
| cosine_mrr@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
| cosine_mrr@20 | 0.809 | 0.5608 | 0.5107 | 0.7994 | 0.7938 | 0.7504 | 0.4124 |
| cosine_mrr@50 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7944 | 0.7513 | 0.4124 |
| cosine_mrr@100 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
| cosine_mrr@150 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
| cosine_mrr@200 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
| cosine_map@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
| cosine_map@20 | 0.5561 | 0.4793 | 0.4033 | 0.5072 | 0.7324 | 0.693 | 0.3299 |
| cosine_map@50 | 0.5478 | 0.4265 | 0.3593 | 0.4897 | 0.7347 | 0.6961 | 0.3299 |
| cosine_map@100 | 0.5792 | 0.4309 | 0.3633 | 0.5197 | 0.7353 | 0.6968 | 0.3299 |
| cosine_map@150 | 0.5872 | 0.4463 | 0.378 | 0.5277 | 0.7354 | 0.6969 | 0.3299 |
| cosine_map@200 | 0.5909 | 0.4536 | 0.3855 | 0.5311 | 0.7355 | 0.697 | 0.3299 |
| cosine_map@500 | 0.5949 | 0.4659 | 0.3984 | 0.5365 | 0.7356 | 0.6971 | 0.3299 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 5.68 tokens
- max: 11 tokens
- min: 3 tokens
- mean: 5.76 tokens
- max: 12 tokens
- Samples:
anchor positive air commodoreflight lieutenantcommand and control officerflight officerair commodorecommand and control officer - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 7.99 tokens
- max: 30 tokens
- min: 3 tokens
- mean: 8.19 tokens
- max: 30 tokens
- Samples:
anchor positive StaffelkommandantinKommodoreLuftwaffenoffizierinLuftwaffenoffizier/LuftwaffenoffizierinStaffelkommandantinLuftwaffenoffizierin - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 9.13 tokens
- max: 32 tokens
- min: 3 tokens
- mean: 8.84 tokens
- max: 32 tokens
- Samples:
anchor positive jefe de escuadróninstructorcomandante de aeronaveinstructor de simuladorinstructoroficial del Ejército del Aire - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 7.15 tokens
- max: 14 tokens
- min: 5 tokens
- mean: 7.46 tokens
- max: 21 tokens
- Samples:
anchor positive 技术总监技术和运营总监技术总监技术主管技术总监技术艺术总监 - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 2 tokens
- mean: 6.71 tokens
- max: 19 tokens
- min: 2 tokens
- mean: 7.69 tokens
- max: 19 tokens
- Samples:
anchor positive technical managerTechnischer Direktor für Bühne, Film und Fernsehenhead of technicaldirectora técnicahead of technical department技术艺术总监 - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 128gradient_accumulation_steps: 2num_train_epochs: 5warmup_ratio: 0.05log_on_each_node: Falsefp16: Truedataloader_num_workers: 4ddp_find_unused_parameters: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Falselogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Trueddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|---|---|---|---|---|---|---|---|---|---|
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
| 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
| 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
| 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
| 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
| 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
| 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
| 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
| 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
| 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
| 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
| 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
| 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
| 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
| 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
| 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
| 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
| 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
| 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
| 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
| 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
| 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
| 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
| 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
| 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
| 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
| 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
| 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
| 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
| 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
| 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
| 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
| 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
| 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
| 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
| 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
| 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
| 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
| 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
| 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
| 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
| 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}