pj-mathematician's picture
Add files using upload-large-folder tool
48d168a verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:124788
  - loss:GISTEmbedLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
  - source_sentence: 其他机械、设备和有形货物租赁服务代表
    sentences:
      - 其他机械和设备租赁服务工作人员
      - 电子和电信设备及零部件物流经理
      - 工业主厨
  - source_sentence: 公交车司机
    sentences:
      - 表演灯光设计师
      - 乙烯基地板安装工
      - 国际巴士司机
  - source_sentence: online communication manager
    sentences:
      - trades union official
      - social media manager
      - budget manager
  - source_sentence: Projektmanagerin
    sentences:
      - Projektmanager/Projektmanagerin
      - Category-Manager
      - Infanterist
  - source_sentence: Volksvertreter
    sentences:
      - Parlamentarier
      - Oberbürgermeister
      - Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@20
  - cosine_accuracy@50
  - cosine_accuracy@100
  - cosine_accuracy@150
  - cosine_accuracy@200
  - cosine_precision@1
  - cosine_precision@20
  - cosine_precision@50
  - cosine_precision@100
  - cosine_precision@150
  - cosine_precision@200
  - cosine_recall@1
  - cosine_recall@20
  - cosine_recall@50
  - cosine_recall@100
  - cosine_recall@150
  - cosine_recall@200
  - cosine_ndcg@1
  - cosine_ndcg@20
  - cosine_ndcg@50
  - cosine_ndcg@100
  - cosine_ndcg@150
  - cosine_ndcg@200
  - cosine_mrr@1
  - cosine_mrr@20
  - cosine_mrr@50
  - cosine_mrr@100
  - cosine_mrr@150
  - cosine_mrr@200
  - cosine_map@1
  - cosine_map@20
  - cosine_map@50
  - cosine_map@100
  - cosine_map@150
  - cosine_map@200
  - cosine_map@500
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full en
          type: full_en
        metrics:
          - type: cosine_accuracy@1
            value: 0.6476190476190476
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9904761904761905
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9904761904761905
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9904761904761905
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9904761904761905
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9904761904761905
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6476190476190476
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5133333333333332
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.3165714285714285
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.18857142857142858
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.13396825396825396
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.10433333333333335
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.06742481608756247
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.5411228142559339
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.7397482609380314
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.8429667985290079
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.8856357375498775
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9091330295382077
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6476190476190476
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6917131025478591
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.71478335831634
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7666819432677721
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7855970749692088
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7960468614602451
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6476190476190476
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.8090476190476191
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.8090476190476191
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.8090476190476191
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.8090476190476191
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.8090476190476191
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6476190476190476
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.5561135670751935
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.5477711353289022
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.5791852239372863
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.5872469517518495
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.5908784036739082
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.5948564356607342
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full es
          type: full_es
        metrics:
          - type: cosine_accuracy@1
            value: 0.12972972972972974
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 1
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 1
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 1
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 1
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 1
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.12972972972972974
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5705405405405405
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.38962162162162167
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.25140540540540546
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.19012612612612612
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.15154054054054056
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.0037413987812150314
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.38432915927625627
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.5663097940153319
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.6710180189388714
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.7443549924512646
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.7804985217049148
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.12972972972972974
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6133809590566169
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5888378318443163
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.613553130716134
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.6492700673561147
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.6672020616803231
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.12972972972972974
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.5608108108108109
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.5608108108108109
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.5608108108108109
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.5608108108108109
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.5608108108108109
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.12972972972972974
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.47928087268629077
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.4265150109477007
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.4308614258675324
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.446315567522346
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.45361884446786194
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.46587892353181215
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full de
          type: full_de
        metrics:
          - type: cosine_accuracy@1
            value: 0.2955665024630542
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9704433497536946
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9852216748768473
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9852216748768473
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9901477832512315
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9901477832512315
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.2955665024630542
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5120689655172413
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.3664039408866995
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.2411330049261084
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.180623973727422
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.1453448275862069
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.01108543831680986
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.3229666331805043
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.5039915991834915
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.6239950018657238
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.6837127628220585
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.724182886190782
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.2955665024630542
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.5416271120841382
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5273905187096658
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.5573943264798527
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.5882759422186796
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.6082376029646045
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.2955665024630542
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.510702296647636
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.5111935025343795
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.5111935025343795
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.5112378818891037
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.5112378818891037
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.2955665024630542
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.4032624181455029
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.35929856113701575
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.3633301227599498
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.3779770424201306
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.38546911827821406
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.3983960288142158
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full zh
          type: full_zh
        metrics:
          - type: cosine_accuracy@1
            value: 0.6504854368932039
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9805825242718447
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9902912621359223
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9902912621359223
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9902912621359223
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9902912621359223
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6504854368932039
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.47815533980582525
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.28699029126213593
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.17563106796116504
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.12543689320388354
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.09786407766990295
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.06122803520614593
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.512665335199255
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.6880766978766553
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.8002784995071653
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.8453144636093844
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.8773140543871931
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6504854368932039
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6531212612064398
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.6669362863744952
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7218911998936125
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7415597018345085
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7535751066625261
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6504854368932039
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7993527508090615
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7997572815533981
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.7997572815533981
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7997572815533981
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7997572815533981
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6504854368932039
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.5072300500933464
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.4897274345176646
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.5196798622563865
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.5276837053538445
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.5311205359244624
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.5365056842045905
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix es
          type: mix_es
        metrics:
          - type: cosine_accuracy@1
            value: 0.7243889755590224
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9609984399375975
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9797191887675507
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9937597503900156
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9958398335933437
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9973998959958398
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.7243889755590224
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.12428497139885596
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.05134685387415497
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.026214248569942804
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.017597503900156002
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.013281331253250133
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.2802961642275215
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.9183394002426764
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.9482665973305597
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.9692234356040907
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.9756023574276305
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9821892875715027
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.7243889755590224
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.8023352815755668
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.8104895152869938
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.8150081000806421
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.8162651648802736
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.8174362445077372
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.7243889755590224
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7938466413093047
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7944053350960067
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.794613049565821
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7946306448507517
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7946402095756717
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.7243889755590224
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.7324440771234734
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.734716178743038
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.7353155432601859
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.735429453970343
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.7355154445871764
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.7356208832908805
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix de
          type: mix_de
        metrics:
          - type: cosine_accuracy@1
            value: 0.6697867914716589
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9505980239209568
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9771190847633905
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9859594383775351
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9921996879875195
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9942797711908476
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6697867914716589
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.12470098803952159
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.05225169006760271
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.026708268330733236
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.01798231929277171
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.01353874154966199
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.2517940717628705
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.9059022360894435
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.9474345640492287
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.967932050615358
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.9771190847633905
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9807592303692148
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6697867914716589
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.770344092734726
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.7819450345813985
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7865455025019679
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7883807621544129
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7890604802329748
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6697867914716589
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7504302722692131
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7513280223222801
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.7514573016845009
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7515108675350354
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7515238522218625
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6697867914716589
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.6929705838065172
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.696080766802269
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.6967651580129317
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.6969258122016383
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.6969715581100935
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.6970655432634698
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix zh
          type: mix_zh
        metrics:
          - type: cosine_accuracy@1
            value: 0.19760790431617264
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 1
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 1
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 1
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 1
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 1
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.19760790431617264
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.15439417576703063
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.0617576703068123
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.03087883515340615
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.020585890102270757
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.015439417576703075
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.06371492954956293
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 1
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 1
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 1
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 1
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 1
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.19760790431617264
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.5478938300274205
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5478938300274205
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.5478938300274205
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.5478938300274205
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.5478938300274205
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.19760790431617264
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.4124442798779788
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.4124442798779788
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.4124442798779788
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.4124442798779788
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.4124442798779788
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.19760790431617264
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.32993583709540925
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.32993583709540925
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.32993583709540925
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.32993583709540925
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.32993583709540925
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.32993583709540925
            name: Cosine Map@500

SentenceTransformer based on Alibaba-NLP/gte-multilingual-base

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-multilingual-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • full_en
    • full_de
    • full_es
    • full_zh
    • mix

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric full_en full_es full_de full_zh mix_es mix_de mix_zh
cosine_accuracy@1 0.6476 0.1297 0.2956 0.6505 0.7244 0.6698 0.1976
cosine_accuracy@20 0.9905 1.0 0.9704 0.9806 0.961 0.9506 1.0
cosine_accuracy@50 0.9905 1.0 0.9852 0.9903 0.9797 0.9771 1.0
cosine_accuracy@100 0.9905 1.0 0.9852 0.9903 0.9938 0.986 1.0
cosine_accuracy@150 0.9905 1.0 0.9901 0.9903 0.9958 0.9922 1.0
cosine_accuracy@200 0.9905 1.0 0.9901 0.9903 0.9974 0.9943 1.0
cosine_precision@1 0.6476 0.1297 0.2956 0.6505 0.7244 0.6698 0.1976
cosine_precision@20 0.5133 0.5705 0.5121 0.4782 0.1243 0.1247 0.1544
cosine_precision@50 0.3166 0.3896 0.3664 0.287 0.0513 0.0523 0.0618
cosine_precision@100 0.1886 0.2514 0.2411 0.1756 0.0262 0.0267 0.0309
cosine_precision@150 0.134 0.1901 0.1806 0.1254 0.0176 0.018 0.0206
cosine_precision@200 0.1043 0.1515 0.1453 0.0979 0.0133 0.0135 0.0154
cosine_recall@1 0.0674 0.0037 0.0111 0.0612 0.2803 0.2518 0.0637
cosine_recall@20 0.5411 0.3843 0.323 0.5127 0.9183 0.9059 1.0
cosine_recall@50 0.7397 0.5663 0.504 0.6881 0.9483 0.9474 1.0
cosine_recall@100 0.843 0.671 0.624 0.8003 0.9692 0.9679 1.0
cosine_recall@150 0.8856 0.7444 0.6837 0.8453 0.9756 0.9771 1.0
cosine_recall@200 0.9091 0.7805 0.7242 0.8773 0.9822 0.9808 1.0
cosine_ndcg@1 0.6476 0.1297 0.2956 0.6505 0.7244 0.6698 0.1976
cosine_ndcg@20 0.6917 0.6134 0.5416 0.6531 0.8023 0.7703 0.5479
cosine_ndcg@50 0.7148 0.5888 0.5274 0.6669 0.8105 0.7819 0.5479
cosine_ndcg@100 0.7667 0.6136 0.5574 0.7219 0.815 0.7865 0.5479
cosine_ndcg@150 0.7856 0.6493 0.5883 0.7416 0.8163 0.7884 0.5479
cosine_ndcg@200 0.796 0.6672 0.6082 0.7536 0.8174 0.7891 0.5479
cosine_mrr@1 0.6476 0.1297 0.2956 0.6505 0.7244 0.6698 0.1976
cosine_mrr@20 0.809 0.5608 0.5107 0.7994 0.7938 0.7504 0.4124
cosine_mrr@50 0.809 0.5608 0.5112 0.7998 0.7944 0.7513 0.4124
cosine_mrr@100 0.809 0.5608 0.5112 0.7998 0.7946 0.7515 0.4124
cosine_mrr@150 0.809 0.5608 0.5112 0.7998 0.7946 0.7515 0.4124
cosine_mrr@200 0.809 0.5608 0.5112 0.7998 0.7946 0.7515 0.4124
cosine_map@1 0.6476 0.1297 0.2956 0.6505 0.7244 0.6698 0.1976
cosine_map@20 0.5561 0.4793 0.4033 0.5072 0.7324 0.693 0.3299
cosine_map@50 0.5478 0.4265 0.3593 0.4897 0.7347 0.6961 0.3299
cosine_map@100 0.5792 0.4309 0.3633 0.5197 0.7353 0.6968 0.3299
cosine_map@150 0.5872 0.4463 0.378 0.5277 0.7354 0.6969 0.3299
cosine_map@200 0.5909 0.4536 0.3855 0.5311 0.7355 0.697 0.3299
cosine_map@500 0.5949 0.4659 0.3984 0.5365 0.7356 0.6971 0.3299

Training Details

Training Datasets

full_en

full_en

  • Dataset: full_en
  • Size: 28,880 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 5.68 tokens
    • max: 11 tokens
    • min: 3 tokens
    • mean: 5.76 tokens
    • max: 12 tokens
  • Samples:
    anchor positive
    air commodore flight lieutenant
    command and control officer flight officer
    air commodore command and control officer
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_de

full_de

  • Dataset: full_de
  • Size: 23,023 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 7.99 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.19 tokens
    • max: 30 tokens
  • Samples:
    anchor positive
    Staffelkommandantin Kommodore
    Luftwaffenoffizierin Luftwaffenoffizier/Luftwaffenoffizierin
    Staffelkommandantin Luftwaffenoffizierin
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_es

full_es

  • Dataset: full_es
  • Size: 20,724 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 9.13 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.84 tokens
    • max: 32 tokens
  • Samples:
    anchor positive
    jefe de escuadrón instructor
    comandante de aeronave instructor de simulador
    instructor oficial del Ejército del Aire
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_zh

full_zh

  • Dataset: full_zh
  • Size: 30,401 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 7.15 tokens
    • max: 14 tokens
    • min: 5 tokens
    • mean: 7.46 tokens
    • max: 21 tokens
  • Samples:
    anchor positive
    技术总监 技术和运营总监
    技术总监 技术主管
    技术总监 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
mix

mix

  • Dataset: mix
  • Size: 21,760 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 6.71 tokens
    • max: 19 tokens
    • min: 2 tokens
    • mean: 7.69 tokens
    • max: 19 tokens
  • Samples:
    anchor positive
    technical manager Technischer Direktor für Bühne, Film und Fernsehen
    head of technical directora técnica
    head of technical department 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • num_train_epochs: 5
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • ddp_find_unused_parameters: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss full_en_cosine_ndcg@200 full_es_cosine_ndcg@200 full_de_cosine_ndcg@200 full_zh_cosine_ndcg@200 mix_es_cosine_ndcg@200 mix_de_cosine_ndcg@200 mix_zh_cosine_ndcg@200
-1 -1 - 0.7447 0.6125 0.5378 0.7240 0.7029 0.6345 0.5531
0.0010 1 3.4866 - - - - - - -
0.1027 100 2.5431 - - - - - - -
0.2053 200 1.4536 0.7993 0.6633 0.5974 0.7642 0.7567 0.7011 0.5498
0.3080 300 1.1018 - - - - - - -
0.4107 400 0.9184 0.7925 0.6586 0.6058 0.7587 0.7749 0.7278 0.5486
0.5133 500 0.8973 - - - - - - -
0.6160 600 0.7309 0.7951 0.6671 0.6096 0.7708 0.7793 0.7339 0.5525
0.7187 700 0.7297 - - - - - - -
0.8214 800 0.7281 0.7929 0.6711 0.6088 0.7645 0.7899 0.7444 0.5479
0.9240 900 0.6607 - - - - - - -
1.0267 1000 0.6075 0.7915 0.6659 0.6088 0.7665 0.7968 0.7588 0.5482
1.1294 1100 0.4553 - - - - - - -
1.2320 1200 0.4775 0.7979 0.6696 0.6033 0.7669 0.7959 0.7624 0.5484
1.3347 1300 0.4838 - - - - - - -
1.4374 1400 0.4912 0.7973 0.6757 0.6112 0.7656 0.7978 0.7650 0.5487
1.5400 1500 0.4732 - - - - - - -
1.6427 1600 0.5269 0.8031 0.6723 0.6108 0.7654 0.8008 0.7660 0.5492
1.7454 1700 0.4822 - - - - - - -
1.8480 1800 0.5072 0.7962 0.6668 0.6051 0.7592 0.8001 0.7714 0.5486
1.9507 1900 0.4709 - - - - - - -
2.0544 2000 0.3772 0.7940 0.6647 0.6037 0.7579 0.8064 0.7732 0.5479
2.1571 2100 0.3982 - - - - - - -
2.2598 2200 0.3073 0.7969 0.6652 0.6005 0.7625 0.8054 0.7734 0.5493
2.3624 2300 0.383 - - - - - - -
2.4651 2400 0.3687 0.7925 0.6690 0.5987 0.7583 0.8081 0.7735 0.5477
2.5678 2500 0.3472 - - - - - - -
2.6704 2600 0.3557 0.7956 0.6758 0.6019 0.7659 0.8082 0.7767 0.5491
2.7731 2700 0.3527 - - - - - - -
2.8758 2800 0.3446 0.7945 0.6719 0.6020 0.7616 0.8124 0.7818 0.5496
2.9784 2900 0.3566 - - - - - - -
3.0821 3000 0.3252 0.7948 0.6682 0.6025 0.7617 0.8152 0.7848 0.5516
3.1848 3100 0.2968 - - - - - - -
3.2875 3200 0.2962 0.7953 0.6717 0.6086 0.7613 0.8110 0.7824 0.5482
3.3901 3300 0.3084 - - - - - - -
3.4928 3400 0.2909 0.7940 0.6634 0.6023 0.7615 0.8138 0.7822 0.5457
3.5955 3500 0.2964 - - - - - - -
3.6982 3600 0.3193 0.7960 0.6635 0.6070 0.7534 0.8164 0.7844 0.5467
3.8008 3700 0.3514 - - - - - - -
3.9035 3800 0.3147 0.7973 0.6696 0.6125 0.7616 0.8176 0.7885 0.5469
4.0062 3900 0.2738 - - - - - - -
4.1088 4000 0.2842 0.7960 0.6672 0.6082 0.7536 0.8174 0.7891 0.5479

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}